Biological Trace Element Research

, Volume 62, Issue 3, pp 199–212 | Cite as

Trace elements in human scalp hair and soil in irian jaya

  • Mila Tommaseo Ponzetta
  • Serenella Nardi
  • Irene Calliari
  • Mirco Lucchese


Pb, Cd, and Ni contents were determined in the scalp hair of the Asmat of Irian Jaya (Indonesian New Guinea) on 35 adult subjects. These data are presented together with those of Al, Ca, Ti, Fe, Cu, Zn and Sr, which were determined in previous research on the same group. Hair samples were analyzed by EDXRS and ICP. Trace elements were also determined in 12 soil samples from the same area by EDXRS (Al, Si, K, Ca, Fe) and ICP (Cu, Sr, Ti), and by AAS (Cd, Ni, Pb). When hair element levels are compared and discussed with those of other New Guinea populations, acculturated and nonacculturated tropical groups, populations from Western countries and from polluted areas, and “recommended levels” in the literature, they greatly exceed Western levels and generally fit those of other New Guinea populations, stressing the importance of common environment, subsistence, and behavior. The results of soil analyses are consistent with the presence of those elements in hair, and their quantitative distribution follows a common trend. Metal mobility in soil, patterns of absorption, and transfer from soil to plants and to humans are considered here.

Index entries

Trace elements human hair soil Irian Jaya New Guina EDXRS ICP AAS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Mertz, The essential trace elements,Science 213, 1332–1338 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    R. A. Passwater and E. M. Cranton (eds.),Trace Elements, Hair Analysis and Nutrition, Keats, New Canaan, CT (1983).Google Scholar
  3. 3.
    A. Valkovic and N. Limic, Hair analysis: how useful it is and can it be done properly,Nuclear Instruments and Methods in Physics Res. B22, 159–162 (1987).CrossRefGoogle Scholar
  4. 4.
    A. Chatt and S. A. Katz,Hair Analysis: Application in the Biomedical and Environmental Sciences, VCH, Weinheim (1988).Google Scholar
  5. 5.
    T. S. Srikumar, G. K. Johansson, P. A. Öckerman, J. A. Gustafsson, and B. Åkesson, Trace element status in healthy subjects switching from a mixed to a lactovegetarian diet for 12 mo,Am. J. Clin. Nutr. 55, 885–890 (1992).PubMedGoogle Scholar
  6. 6.
    D. I. Hammer, J. F. Finklea, R. H. Hendricks, C. M. Shy, and R. J. M. Horton, Hair trace metal levels and environmental exposure,Am. J. Epidemiol. 93, 84–92 (1971).PubMedGoogle Scholar
  7. 7.
    O. Senofonte, N. Violante, L. Fornarelli, E. Beccaloni, A. Powar, and S. Caroli, Reference values for elements of toxicological, clinical and environmental interest in hair of urban subjects,Ann. 1st. Superiore Sanità 25, 385–392 (1989).Google Scholar
  8. 8.
    V. Bencko, Biological monitoring of Environmental pollution and resulting human exposure to trace metals by hair analysis, inBiological Monitoring of Exposure to Chemicals: Metals, H. K. Dillon and M. H. Ho, eds., John Wiley, New York, pp. 243–254 (1991).Google Scholar
  9. 9.
    A. Al-Hashimi, S. S. Krishnan, and R. E. Jervis, Human hair as a pollutant dosimeter,J. Radioanal. Nuclear Chem. 161, 171–180 (1992).CrossRefGoogle Scholar
  10. 10.
    E. Cortes Toro, J. J. M. De Goeij, J. Bacso, Yuan-Di-Cheng, I. Kinova, J. Matsubara, et al., The significance of hair mineral analysis as a means for assessing internal body burdens of environmental pollutants: results from an IAEA co-ordinated research programme,J. Radioanal. Nuclear Chem. 167, 413–421 (1993).CrossRefGoogle Scholar
  11. 11.
    J. Yoshinaga, H. Imai, M. Nakazawa, and T. Suzuki, Lack of significantly positive correlations between elemental concentrations in hair and in organs,Sci. Total Environ. 99, 125–135 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    E. DiPietro, D. L. Phillips, D. C. Paschal, and J. W. Neese, Determination of trace elements in human hair,Biol. Trace Element Res,22, 83–100 (1989).Google Scholar
  13. 13.
    V. Iyengar and J. Woittiez, Trace elements in human clinical specimens: evaluation of literature data to identify reference values,Clin. Chem. 34, 474–481 (1988).PubMedGoogle Scholar
  14. 14.
    S. Caroli, O. Senofonte, N. Violante, L. Fornarelli, and A. Powar, Assessment of reference values for elements in hair of urban normal subjects,Microchem. J. 46, 174–183 (1992).CrossRefGoogle Scholar
  15. 15.
    L. H. Hecker, H. E. Allen, V. Dinman, and J. V. Neel, Heavy metal levels in acculturated and unacculturated populations,Arch. Environ. Health 29, 181–185 (1974).PubMedGoogle Scholar
  16. 16.
    I. Calliari, M. Tommaseo, G. U. Caravello, and A. Volpe, An attempt to determine the hair metal content in the Asmat population (Irian Jaya, Indonesia),Metal Compounds in Environ, and Life (Interrelation between Chemistry and Biology)4, 47–54 (1991).Google Scholar
  17. 17.
    M. Tommaseo, G. U. Caravello, I. Calliari, G. Carniel, and M. Lucchese, Studio degli elementi in traccia nei capelli della popolazione Asmat (Irian Jaya, Indonesia),Antropologia Contemporanea 16, 327–334 (1993).Google Scholar
  18. 18.
    M. Tommaseo Ponzetta, M. Zago, A. Tollardo, I. Calliari, G. U. Caravello, and G. Alciati, ICP-MS Hair Trace Element Analysis and Subsistence economy in New Guinea, Proceedings IX Congress E.A.A. (1994).Google Scholar
  19. 19.
    T. Hongo and T. Suzuki, Micronutrients in hair, inPopulation Ecology of Human Survival: Bioecological Studies of the Gidra in Papua New Guinea, R. Ohtsuka and T. Suzuki, eds., University of Tokyo Press, Tokyo, pp. 175–185 (1990).Google Scholar
  20. 20.
    E. Löffler, Landforms and landform development, in:Biogeography and Ecology of New Guinea, vol. I, J. L. Gressitt, ed., pp. 57–72, Dr. W. Junk, The Hague (1982).Google Scholar
  21. 21.
    P. E. Pieters, Geology of New Guinea, inBiogeography and Ecology of New Guinea, vol. I, J. L. Gressitt, ed., pp. 15–38, Dr. W. Junk, The Hague (1982).Google Scholar
  22. 22.
    A. W. Wood, The soils of New Guinea, inBiogeography and Ecology of New Guinea, vol. I, J. L. Gressitt, ed., pp. 73–86, Dr. W. Junk, The Hague (1982).Google Scholar
  23. 23.
    F. W. J. Van Es and J. van Schuylenborgh, Contribute to the knowledge of solonetzic, magnesium rich alluvial silty clay in the Maro-Keombe plain,Netherlands J. Agricultural Sci. 15, 11–20 (1967).Google Scholar
  24. 24.
    P. Bleeker, Soils of the Morehead-Kiunga area,CSIRO Land Res. Ser. 29, 69–87 (1971).Google Scholar
  25. 25.
    J. P. Creason, O. McNulty, and L. T. Heiderscheidt, Roadside gradients in atmospheric concentrations of cadmium, lead and zinc, inTrace Substances in Environmental Health, 5th ed., D. D. Hemphill, ed., University of Missouri Press, Columbia, MO, p. 129 (1972).Google Scholar
  26. 26.
    J. P. Creason, T. A. Hinners, J. E. Bumgarner, and C. Pinkerton, Trace elements in hair, as related to exposure in metropolitan New York,Clin. Chem. 21, 603–612 (1975).PubMedGoogle Scholar
  27. 27.
    F. Díaz-Barriga, M. Angel Santos, J. De Jesús Mejía, L. Batres, L. Yáñez, L. Carrizales, et al., Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosó, Mexico,Environ. Res. 62, 242–250 (1993).PubMedCrossRefGoogle Scholar
  28. 28.
    H. L. Cannon and H. C. Hopps, eds.,Environmental Geochemistry in Health and Disease, Memoir 123, Geological Society of America, Boulder, CO (1971).Google Scholar
  29. 29.
    H. C. Hopps and H. C. Cannon, eds.,Geochemicat Environment in Relation to Health and Disease, New York Academy of Sciences, New York (1972).Google Scholar
  30. 30.
    A. A. Rauf and R. E. Jervis, INNA of human scalp hair for environmental monitoring of Indonesian and Canadian population groups,J Radioanal, and Nuclear Chem. 161, 201–213 (1992).CrossRefGoogle Scholar
  31. 31.
    V. A. Batzevich, Hair trace element analysis in human ecology studies,Sci. Total Environ. 164, 89–98 (1995).PubMedCrossRefGoogle Scholar
  32. 32.
    J. S. Brown, Role of selenium and other trace elements in the geography of schizophrenia,Schizophrenia Bull. 20, 387–398 (1994).Google Scholar
  33. 33.
    P. Van Arsdale, Perspectives on development in Asmat, inAn Asmat Sketch Book no. 5 (2 vol.) F. Trenkenshuh, ed., Asmat Museum, Agats, Irian Jaya (1978).Google Scholar
  34. 34.
    C. L. Voorhaeve,The Flamingo Bay Dialect of the Asmat Language, Martinus Nijhoff, The Hague (1965).Google Scholar
  35. 35.
    S. A. Wurm, Language distribution in the New Guinea area, inNew Guinea Area Languages and the New Guinea Linguistic Scene, Wurm S. A., ed., Pacific Linguistic series C, no. 38 Australian National University, Canberra, pp. 3–38 (1975).Google Scholar
  36. 36.
    M. Tommaseo and M. Paoletti, Insects as food for the Irian Jaya populations,Ecology Food Nutr. 36, 321–346 (1997).CrossRefGoogle Scholar
  37. 37.
    T. S. Srikumar, A. Källgård, S. Lindeberg, P. A. Öckerman, and B. Åkesson, Trace elements concentrations in hair of subjects from two South Pacific Islands, Atafu (Tokelau) and Kitava (Papua New Guinea),J. Trace Element Electrolytes Health Dis. 8, 21–26 (1994).Google Scholar
  38. 38.
    Y. Takagi, S. Matsuda, S. Imai, Y. Ohmori, T. Masuda, J. A. Vinson, M. C. Mehra, et al, Trace elements in human hair: an international comparison,Bull. Environ. Contam. Toxicol. 36, 793–800 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    A. F. Oluwole, J. O. Ojo, M. A. Durosinmi, O. I. Asubiojo, O. A. Akanle, N. M. Spyrou, et al, Elemental composition of head hair and fingernails of some Nigerian subjects,Biol. Trace Element Res. 39, 443–451 (1993).Google Scholar
  40. 40.
    N. Baumslag and H. G. Petering, Trace metal studies in bushman hair,Arch. Environ. Health 31, 254–257 (1976).PubMedGoogle Scholar
  41. 41.
    J. M. McKenzie, Alteration of the zinc and copper concentration of hair,Am. J. Clin. Nutr. 31, 470–476 (1978).PubMedGoogle Scholar
  42. 42.
    M. D. T. Shiashala, K. Kabengele, and B. M. Lumu, Trace element determination in scalp hair of people working at a copper smelter,Biol. Trace Element Res. 26-27, 287–294 (1990).CrossRefGoogle Scholar
  43. 43.
    W. Ashraf, M. Jaffar, and D. Mohammad, Trace metal contamination study in the scalp hair of occupationally exposed workers,Bull. Environm. Contam. Toxicol. 53, 516–523 (1994).CrossRefGoogle Scholar
  44. 44.
    G. Lloyd Jones, D. Willy, B. Lumsden, T. Taufa, and J. Lourie, Trace metals in the hair of Inhabitants of the Ok Tedi Region, Papua New Guinea,Environ. Pollut. 48, 101–115 (1987).PubMedCrossRefGoogle Scholar
  45. 45.
    A. Jamett, M. Santander, L. Pena, N. Gras, and L. Muñoz, Trace elements in the hair of workers of a copper mine and of children living in the vicinity,J. Radioanal. Nuclear Chem. 155, 6: 383–389 (1991).CrossRefGoogle Scholar
  46. 46.
    P. Luderitz, D. Marquardt, S. Leppin, J. Grosser, and M. S. Belakovsky,Z Klin. Med. 20, 1515–1520 (1985).Google Scholar
  47. 47.
    M. Wolfsperger, G. Hauser, W. Göβler, and W. Schlagenhaufen, Heavy metals in human hair samples from Austria and Italy: influence of sex and smoking habits,Sci. Total Environ. 156, 235–242 (1994).PubMedCrossRefGoogle Scholar
  48. 48.
    G. Hauser, A. Vienna, E. Capucci, W. Goβler M. Wolfsperger, A. Guidotti, and M. Tommaseo Ponzetta, Concentrations of barium, strontium, magnesium, and iron in human hair, inL’adattamento umano allíambiente, passato e presente, Atti del XI Congresso degli antropologi italiani, C. Peretto and S. Milliken, eds., A.B.A.C.O., Forli pp. 585–592 (1996).Google Scholar
  49. 49.
    T. H. Bothwell, H. C. Seftel, P. Jacobs, and N. Baumslag, Iron overload in Bantu subjects: Studies on the availability of iron in Bantu beer,Am. J. Clin. Nutr. 14, 47–51 (1964).PubMedGoogle Scholar
  50. 50.
    J. G. Dorea and S. E. Pereira, The influence of hair color on the concentration of zinc and copper in boys’ hair,J. Nutr. 113, 2375–2381 (1983).PubMedGoogle Scholar
  51. 51.
    V. J. Horcicko, J. Borowansky, and J. Duchon, Verteilung von Zink und Kupfer im menschlichen Kopfhaar verschiedener Farbtöne, Dermatologische Monatsschrift, Bd.159, 206–209 (1973).Google Scholar
  52. 52.
    B. L. Smith, Analysis of hair element levels by age, sex, race and hair color, inTrace Elements in Man and Animals, M. Anke, D. Meissner, and C. F. Mills., eds., Tema 8, Verlag media Touristik (1993).Google Scholar
  53. 53.
    J. Asher, Beneficial elements, functional nutrients, and possible new essential elements, inMicronutrients in Agriculture, 2nd ed., R. J. Luxmoore, ed., SSSA Madison, WI, pp. 703–730 (1991).Google Scholar
  54. 54.
    H. Marschener,Mineral Nutrition of Higher Plants, Academic, London, p. 674 (1986).Google Scholar
  55. 55.
    Y. Chen, Organic matter reactions involving micronutrients in soils and their effect on plants, inHumic Substances in Terrestrial Ecosystems, A. Piccolo, ed. pp. 507–530 (1996).Google Scholar
  56. 56.
    M. P. Ireland, Heavy metal sources-uptake and distribution in terrestrial macroinvertebrates, inBiological Monitoring of Exposure to Chemicals: Metals, H. Kenneth Dillon and M. H. Ho, eds., Wiley, New York, pp. 263–276 (1991).Google Scholar
  57. 57.
    M. S. Blackman and C. N. McDaniel, Amino acid transport in suspension-cultured plant cells,Plant Physiol. 66, 261–266 (1980).PubMedGoogle Scholar
  58. 58.
    P. V. Benko, C. Wood, and J. H. Segel, Specificity and regulation of methionine transport in filamentous fungi,Arch. of Biochem. Biophys. 122, 783–804 (1967).CrossRefGoogle Scholar
  59. 59.
    G. E. Skrye and J. H. Segel, Independent regulation of cysteine and cystine transport in penicillium chrisogenum,Arch. Biochem. Biophys. 138, 306–318 (1970).CrossRefGoogle Scholar
  60. 60.
    R. Hunter and J. H. Segel, Control of the general amino acid permease of penicillium chrysogenum by transinhibition and turnover,Arch. Biochem. Biophys. 154, 387–399 (1973).PubMedCrossRefGoogle Scholar
  61. 61.
    F. J. Stevenson,Cycles of Soil. Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, Wiley, New York, p. 380 (1986).Google Scholar
  62. 62.
    S. H. U. Bowie and I. Thornton, eds.,Environmental Geochemistry and Health, Kluwer Academic, Hingham, MA (1985).Google Scholar
  63. 63.
    D. Vaughan and R. E. Malcolm,Soil Organic Matter and Biological Activity, Martinus Nijhoff/Dr. Junk Publishers, Dordrecht, p. 221 (1985).Google Scholar
  64. 64.
    M. V. Kozlovskaya, Bone mineral content as an indicator of the diet and ecological situation in paleopopulations,Homo 44, 134–144 (1993).Google Scholar
  65. 65.
    F. E. Peters,Chemical Composition of South Pacific Foods: an Annotated Bibliography, Noumea: South Pacific Commission, Technical Paper 100 (1957).Google Scholar
  66. 66.
    J. Barrau, The sago palms and other food plants of marsh dwellers in the South Pacific Islands,Economic Botany 13, 151–162 (1959).Google Scholar
  67. 67.
    C. Jardin and J. Crosnier,Un taro, un poisson, une papaye, Commission du Pacifique Sud, Noumea (Nouvelle Caledonie), p. 476 (1975).Google Scholar
  68. 68.
    A. A. Sowada, II culto del sago dei Papua Asmat, inIndonesia, la grande deriva etnica, AA.VV., Erizzo, Venezia, pp. 135–139 (1986).Google Scholar
  69. 69.
    A. A. Sowada, Sago und Sagolarven im ritual, inAsmat, Mythen und Rituale Inspiration der Kunst, G. and U. Konrad, eds., Erizzo, Venezia, pp. 91–104 (1995).Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Mila Tommaseo Ponzetta
    • 1
  • Serenella Nardi
    • 2
  • Irene Calliari
    • 3
  • Mirco Lucchese
    • 4
  1. 1.Department of ZoologyUniversity of BariBari
  2. 2.Department of Agricultural BiotechnologiesUniversity of PadovaAgripolisLegnaro
  3. 3.Department of Mechanical and Management InnovationUniversity of PadovaPadova
  4. 4.Environmental Public Health LaboratoryPordenoneItaly

Personalised recommendations