Advertisement

Influence of sodium selenite on203Hg absorption, distribution, and elimination in male mice exposed to methyl203Hg

  • Anders Wicklund Glynn
  • Nils-Gunnar Ilbäck
  • Dagmar Brabencova
  • Lena Carlsson
  • Ella-Cari Enqvist
  • Elvy Netzel
  • Agneta Oskarsson
Article

Abstract

To study the effects of long-term selenium supplementation on absorption, distribution, and elimination of methylmercury (MeHg) in mice, three groups of male mice (Balb/c CA) were exposed for 7 wk to 0, 0.6, and 3 ppm sodium selenite in tap water. They were then given a single oral dose of Me203Hg (2 μmol/kg) by gastric intubation, and elimination of203Hg was followed by whole-body counting for 49 d at the same Se exposure as previously. Twenty-four hours and 49 d after dosage, 6–7 animals/group were sampled for analysis of203Hg distribution in the body. Glutathione peroxidase (GSH-PX) activity in blood and selenium levels in the liver were used as measures of selenium status. Gastrointestinal absorption of Me203Hg was not influenced by the Se status of the animals. Selenium supplementation of MeHg-exposed mice caused an enhanced whole-body elimination of Hg, but selenium-supplemented animals did not have lower Hg levels in the brain and kidney than nonsupplemented animals. The effect of selenium on the accumulation, of Hg in the brain was dose-dependent, a high dose (3 ppm Se) causing a higher initial accumulation of Hg. The intracellular distribution of203Hg in the liver and kidney was not affected by Se. The results indicate that selenium treatment of MeHg-exposed mice may have a positive effection the health of the animals by decreasing the total body burden of MeHg.

Index Entries

Selenium methylmercury interaction kinetics, GSH-PX 

References

  1. 1.
    J. Nève,Experientia 47, 187–193 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    H. E Ganther, C. Goudie, M. L. Sunde, M. J. Kopecky, P. Wagner, S.-W. Oh, and W. G. Hoekstra,Science 175, 1123–1124 (1972).CrossRefGoogle Scholar
  3. 3.
    S. H. Johnson and W. G. Pond,Nutr. Rep. Internat. 9, 135–147 (1974).Google Scholar
  4. 4.
    S. D. Potter and G. Matrone,Fed. Proc. Amer. Soc. Exp. Biol. 32, 929 (1973).Google Scholar
  5. 5.
    S. Potter and G. Matrone,J. Nutr. 104, 638–647 (1974).PubMedGoogle Scholar
  6. 6.
    B. R. Stillings, H. Lagally, P. Bauersfeld, and J. Soares,Toxicol. Appl. Pharmacol. 30, 243–254 (1974).CrossRefGoogle Scholar
  7. 7.
    H. Iwata, H. Okamoto, and Y. Ohsawa,Res. Comm. Chem. Pathol. Pharmacol. 5, 673–680 (1973).Google Scholar
  8. 8.
    E. Komsta-Szumska, K. R. Reuhl, and D. R. Miller,J. Toxicol. Environ. Health 12, 775–785 (1983).PubMedGoogle Scholar
  9. 9.
    A. Naganuma and N. Imura,Res. Comm. Chem. Pathol. Pharmacol. 27, 163–173 (1980).Google Scholar
  10. 10.
    A. Naganuma, Y. Kojima, and N. Imura,Res. Comm. Chem. Pathol. Pharmacol. 30, 301–315 (1980).Google Scholar
  11. 11.
    K. Sumino, R. Yamamoto, and S. Kitamura,Nature 268, 73–74 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    H. E. Ganther,Environ. Health Perpect. 25, 71–76 (1978).CrossRefGoogle Scholar
  13. 13.
    L. Magos and M. Webb,Crit. Rev. Toxicol. 8, 1–42 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Ohi, S. Nishigaki, H. Seki, Y. Tamura, T. Maki, H. Konno, S. Ochiai, H. Yamada, Y. Shimamura, I. Mizoguchi, and H. Yaguy,Environ. Res. 12, 49–58 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    R. W. Chen, V. L. Lacy, and P. D. Whanger,Res. Comm. Chem. Pathol. Pharmacol. 12, 297–308 (1975).Google Scholar
  16. 16.
    L. Magos and M. Webb,Arch. Toxicol. 38 201–207 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Iijima, C. Tohyama, C.-C. Lu, and N. Matsumoto,Toxicol. Appl. Pharmacol. 44, 143–146 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Alexander, and T. Norseth,Acta pharmacol. et toxicol. 44, 168–176 (1979).Google Scholar
  19. 19.
    A. Naganuma, Y. Koyama, and N. Imura,Toxicol. Appl. Pharmacol. 54, 405–410 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Doi, and M. Tagawa,Toxicol. Appl. Pharmacol. 69, 407–416 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    I. R. Rowland, A. K. Mallett, J. Flynn, and R. J. Hargreaves,Arch. Toxicol. 59, 94–98 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    D. E. Paglia and W. N. Valentine,J. Lab., Clin. Med. 70, 158–169 (1967).Google Scholar
  23. 23.
    L. Hansson, J. Pettersson, and Å. Olin,Talanta 34, 829–837 (1987).CrossRefPubMedGoogle Scholar
  24. 24.
    N. T. J. Bailey,Statistical Methods in Biology, Hodder and Stoughton, London, 1981, p. 216.Google Scholar
  25. 25.
    J. R. Prohaska and H. E. Ganther,Chem-Biol., Interact. 16, 155–167 (1977).CrossRefGoogle Scholar
  26. 26.
    L. B. Sasser, G. E. Jarboe, and J. Laprade,Biological Implications of Metals in the Environment, H. Drucker and R. E. Wildung, eds. Technical Info Center, Washington, D.C., 1977, pp. 478–487.Google Scholar
  27. 27.
    B. Möller-Madsen and G. Danscher,Toxicol. Appl. Pharmacol. 108, 457–473 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Ohi, S. Nishigaki, H. Seki, Y. Tamura, T. Maki, H. Maeda, S. Ochiai, H. Yamada, Y. Shimamura, and H. Yagyu,Toxicol. Appl. Pharmacol. 32, 527–533 (1975).CrossRefGoogle Scholar
  29. 29.
    E. Komsta-Szumska and D. R. Miller,Toxicology 33, 229–238 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    L. E. Kerper, N. Ballatori, and T. W. Clarkson,Am. J. Physiol. 262, R761-R765 (1992).PubMedGoogle Scholar
  31. 31.
    K. Kostial, D. Kello, S. Jugo, I. Rabar, and T. Maljkovic,Environ. Health Perspect. 25, 81–86 (1978).PubMedCrossRefGoogle Scholar
  32. 32.
    J. K. Piotrowski, J. A. Szymanska, M. Skrzypinska-Gawrysiak, J. Kotelo, and S. Spony,Pharmacol. Toxicol. 70, 53–55 (1992).PubMedGoogle Scholar
  33. 33.
    K. Petersson, L. Dock, K. Söderling, and M. Vather,Pharmacol. Toxicol. 68, 464–468 (1991).PubMedCrossRefGoogle Scholar
  34. 34.
    T. Norseth and T. W. Clarkson,Arch. Environ. Health 21, 717–727 (1970).PubMedGoogle Scholar
  35. 35.
    T. Norseth and T. W. Clarkson,Arch. Environ. Health 22, 569–577 (1971).Google Scholar
  36. 36.
    K. Hirayama and A. Yasutake,J. Toxicol. Environ. Health 18, 49–60 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    K. Hirayama, A. Yasutake, and M. Inoue,Biochem. Pharmacol. 12, 1919–1924 (1987).Google Scholar
  38. 38.
    A. Yasutake and K. Hirayama,Arch. Toxicol. 59, 99–102 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    T. Adachi, A. Yasutake, and K. Hirayama,Toxicology 72, 17–26 (1992).PubMedCrossRefGoogle Scholar
  40. 40.
    K. Sumino, R. Yamamoto, and S. Kitamura,Biochem. Biophys. Res. Comm. 86, 735–741 (1979).PubMedCrossRefGoogle Scholar
  41. 41.
    L. Magos and W. H. Butler,Arch. Toxicol. 35, 25–39 (1976).PubMedCrossRefGoogle Scholar
  42. 42.
    A. Yasutake and K. Hirayama,Toxicology 51, 47–55 (1988).PubMedCrossRefGoogle Scholar
  43. 43.
    J. B. Nielsen and O. Andersen,Toxicology 74, 233–241 (1992).PubMedCrossRefGoogle Scholar
  44. 44.
    J. B. Nielsen, and O. Andersen,Pharmacol. Toxicol. 68, 201–207 (1991).PubMedGoogle Scholar
  45. 45.
    X.-Q. Wu, X.-C. Ce, H.-F. Zhou, Y.-W. Rao, A.-F. Li, and W.-J. Zhang,Trace Element Med. 7, 40–44 (1990).Google Scholar
  46. 46.
    J. K. Miettinen,Mercury, Mercurials and Mercaptans, M. W. Miller and T. W. Clarkson, eds., CC Thomas Publ., Springfield, IL, 1973, pp. 233–243.Google Scholar

Copyright information

© The Humana Press, Inc 1993

Authors and Affiliations

  • Anders Wicklund Glynn
    • 1
  • Nils-Gunnar Ilbäck
    • 1
  • Dagmar Brabencova
    • 1
  • Lena Carlsson
    • 1
  • Ella-Cari Enqvist
    • 1
  • Elvy Netzel
    • 1
  • Agneta Oskarsson
    • 1
  1. 1.Swedish National Food AdministrationUppsalaSweden

Personalised recommendations