Skip to main content
Log in

On the topological features of optimal metabolic pathway regimes

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, the stoichiometric metabolic network ofEscherichia coli has been formulated as a comprehensive mathematical programming model, with a view to identifying the optimal redirection of metabolic fluxes so that the yield of particular metabolites is maximized. Computation and analysis has shown that the over-production of a given metabolite at various cell growth rates is only possible for a finite ordered set of metabolic structures which, in addition, are metabolite-specific. Each regime has distinct topological features, although the actual flux values differ. Application of the model to the production of 20 amino acids on four carbon sources (glucose, glycerol, lactate, and citrate) has also indicated that, for fixed cell composition, the maximum amino acid yield decreases linearly with increasing cell growth rate. However, when the cell composition varies with cell growth rate, the amino-acid yield varies in a nonlinear manner. Medium optimization studies have also demonstrated that, of the above substrates, glucose and glycerol are the most efficient from the energetic viewpoint. Finally, model predictions are analyzed in the light of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

vector of net conversion rates, T-1

C :

time required to replicate the chromosome, T

Cp :

peptide elongation rate, LT-1

D :

time period between termination of a round of replication and the following cell division, T

Di :

drain factor of metabolite,i,T -1

(Ds/rx)gr :

growth related dissipation of Gibbs energy, L2T-2

fai :

amount of amino acid,ai, needed for biomass formation, M

Ji :

reaction flux, T-1

me :

maintenance related dissipation of Gibbs energy, L2T-2

P :

total protein in cell, M

Po :

protein per origin, M

S :

stoichiometric matrix

t :

time, T

X :

metabolite concentration, ML-3

YATP/X :

biomass yield coefficient; Z, objective function, T-1

αi :

maximum flux allowable through reaction flux,υ i,T-1

βr :

ribosome activity;μ, specific growth rate, T-1

τ:

doubling time, T

ν :

vector of net conversion rates, T-1

νi :

flux of reactioni, T-1

γs :

degree of reduction

γai :

amount of amino acid over the total amino acid in cell

Ac :

Acetate

AcCoA :

Acetyl coenzyme A

ADPGlc :

ADP-Glucose

ADPHep :

ADP-D-Glycerol-D-mannoheptose

ASPSA :

Aspartate semihaldehyde

C14:0 :

Myristic acid (n-Tetradecanoic)

C14:1 :

β-Hydroxymyristic acid

C16:0 :

Palmitic acid (n-Hexadecanoic)

C16:1 :

Palmitoleic acid (hexa-9-decanoic)

C18:1 :

Oleic Acid

CaP :

Carbamoyl-phosphate

CDP :

Cytidine-5′-diphosphate

CDPDG :

CDP-Diacylglycerol

CDPEtN :

CDP-Ethanolamine

Chor :

Chorismate

Cit :

Citrate

Citr :

Citrulline

CL :

Diphosphatidylglycerol

CMP :

Cytidine-5′-monophosphate

CMPKDO :

CMP-3-Deoxy-D-manno-octulosonic acidCO 2 Carbon dioxide

dADP :

2′-Deoxy-adenosine-5′-diphosphate

dATP :

2′-Deoxy-adenosine-5′-triphosphate

dCDP :

2′-Deoxy-cytidine-5′ -diphosphate

dCTP :

2′ -Deoxy-cytidine-5′ -triphosphate

dGDP :

2′-Deoxy-guanosine-5′-diphosphate

dGTP :

2′-Deoxy-guanosine-5′-triphosphate

DHF :

7,8-Dihydrofolate

dTTP :

2′-Deoxy-thymidine-5′-triphosphate

dUDP :

2′-Deoxy-uridine-5′ -diphosphate

d UTP :

2′ -Deoxy-uridine-5′ -triphosphate

E4P :

Erythrose-4-phosphate

Eth :

Ethanol

F6P :

Fructose-6-phosphate

FADH :

Flavine adenine dinucleotide (reduced)

Form :

Formate

FTHF :

N5-Formimino-tetrahydrofolate

FNTHF :

N10-Formyl-tetrahydrofolate

Fum :

Fumarate

G1P :

Glucose-1-phosphate

G6P :

Glucose-6-phosphate

GDP :

Guanosine-5′-diphosphate

GL :

Glycerol

GL3P :

Glycerol-3-phosphate

Glc :

Glucose

H2S :

Hydrogen sulfide

Hexp :

Protons exported

HSer :

Homoserine

ICit :

Isocitrate

IGP :

Indoleglycerolphosphate

IMP :

Inosinemonophosphate

Lac :

Lactate

LPS :

Lipopolysaccharide

αKG :

α-Ketoglutarate

Kval :

Ketoisovalerate

Mal :

Malate

MalACP :

Malonyl-ACP

mDAP :

meso-Diaminopimelate

MeTHF :

N5, N10-Methenyl-tetrahydrofolate

MetTHF :

N5, N10-Methylene-tetrahydrofolate

MTHF :

N5-Methyl-tetrahydrofolate

NH3 :

Ammonia

OA :

Oxaloacetate

Orn :

Ornithine

PA :

Phosphatidic acid

PE :

Phosphatidyl-ethanolamine

PEP :

Phosphoenolpyruvate

PG :

Phosphatidyl-glycerol

3PG :

Glycerate-3-phosphate

Pi :

Inorganic orthophosphate

PPi :

Inorganic pyrophosphate

PRAIC :

5′ -Phosphoribosyl-4-carboxamide-5-aminoimidazole

ProCoA :

Propionyl-CoA

PRPP :

Phosphoribosylpyrophosphate

PS :

Phosphatidyl-serine

PTRSC :

Putrescine

Pyr :

Pyruvate

Pyrroline :

Δ1Pyrroline-5-carboxylate

QH2 :

Hydroquinone

R5P :

Ribulose-5-phosphate

Rib5P :

Ribose-5-phosphate

S7P :

Sedoheptulose-7-phosphate

SPRMD :

Spermidine

Succ :

Succinate

SuccCoA :

Succinyl coenzyme A

T3P :

Triose-3-phosphate (for glyceraldehyde-3-P and dihydroxyacetone-P)

TREDH :

Thioredoxin (reduced)

UDPNAG :

UDP-N-Acetyl-glucosamine

References

  1. Ikeda, M. and Katsumata, R. (1992), Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producingCorynebacterium glutamicum.Appl, Environ. Microbiol. 58, 781–785.

    CAS  Google Scholar 

  2. Backman, K. C., O-Connor, M. J., Maruya, A., Rudd, E., McKay, D., Balakrishnan, R., Radjai, M., DiPasquantonio, V., Shoda, D., Hatch, R., and Venkatasubrabramanian, K. (1990), Genetic engineering of metabolic pathways applied to the production of phenylalanine.Ann. NY Acad. Sci. 589, 16–24.

    Article  CAS  Google Scholar 

  3. Ohta, K., Beall, D. S., Mejia, P. J., Shanmugam, K. T., and Ingram L. O. (1991a), Genetic improvement ofEscherichia coli for ethano production: chrosomsomal integration ofZymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II.Appl. Environ. Microbiol. 57, 893–900.

    CAS  Google Scholar 

  4. Ohta, K., Beall, D. S., Mejia, P. J., Shanmugam, K. T., and Ingram L. O. (1991b), Metabolic engineering ofKlebisiella oxytoca M5A1 for ethanol production from xylose and glucose.Appl. Environ. Metabol. 57, 2810–2815.

    CAS  Google Scholar 

  5. Cox, K. L., Fishman, S. E., Hershberger, C. L., and Seno, E. T. (1987), Construction of genetically engineered microorganism having improved antibiotic-producing ability.Eur. Pat. Appl. EP 238323 A2;Chem. Abstr. 108, 54455u.

    Google Scholar 

  6. Chen, C. W., Lin, H.-F., Kuo, C. L., Tsai, H.-L., and Tsai, J. F. -Y. (1988), Cloning and expression of a DNA sequence conferring Cephamycin C production.Biotechnology 6, 1222–1224.

    Article  CAS  Google Scholar 

  7. Beckmann, R. J., Cox, K. L., Rao, R. N., Richardson, M. A., and Seno, T. T. (1992), Macrolide biosynthetic genes for use in stretomyces and other organisms. US Patent, 5,098,837.

  8. Slater, S. C., Voige, W. H., and Dennis, D. E. (1988), Cloning and expression inEscherichia coli of theAlcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway.J. Bacteriol. 170, 4431–4436.

    CAS  Google Scholar 

  9. Tsai, H.-J. and Sandine, W. E. (1987), Conjugal transfer of lactose-fermenting ability fromStreptococcus lactis C2 toLeuconostoc cremoris CAF7 yieldsLeuconostoc that ferment lactose and produce diacetyl.J. Ind. Microbiol. 2, 25–33.

    Article  Google Scholar 

  10. Garfinkel, D., Garfinkel, L., Pring, M., Green, S. B., and Chance, B. (1970), Computer applications to biochemical kinetics.Ann. Rev. Biochem.,39, 473–498.

    Article  CAS  Google Scholar 

  11. Heinrich, R., Rapoport, S. M., and Rapoport, T. A. (1977), Metabolic regulation and mathematical models.Prog. Biophs. Mol. Biol,32, 1–82.

    Article  CAS  Google Scholar 

  12. Hirao, T., Nakano, T., Azuma, T., Sugimoto, M., and Nakanishi T. (1989), L-Lysine production in continuous culture of an L-lysine hyperproducing mutant ofCorynebacterium glutamicum.Appl. Microbiol. Biotechnol. 32, 269–273.

    Article  CAS  Google Scholar 

  13. Shiraishi, F. and Savageau, M. (1992a), The Tricarboxylic Acid Cycle inDictyostelium discoideum. I Formation of alterative kinetic representations.J. Biol. Chem. 267, 22, 912-22, 918.

    Google Scholar 

  14. Shiraishi, F. and Savageau, M. (1992b), The Tricarboxylic Acid Cycle inDictyostelium discoideum. II Evaluation of model consistency and robustness.J. Biol. Chem. 267, 22, 919-22, 925.

    Google Scholar 

  15. Shiraishi, F. and Savageau, M. (1992c), The Tricarboxylic Acid Cycle inDictyostelium discoideum. III Analysis of steady state and dynamic behavior.J. Biol. Chem. 267, 22, 926-22, 933.

    Google Scholar 

  16. Shiraishi, F. and Savageau, M. (1992d), The Tricarboxylic Acid Cycle inDictyostelium discoideum. IV Resolution of discrepancies between alternative methods of analysis.J. Biol. Chem. 267, 22, 934-22, 943.

    Google Scholar 

  17. Shiraishi, F. and Savageau, M. (1993), The Tricarboxylic Acid Cycle inDictyostelium discoideum. V Systemic effects of including protein turnover in the current model.J. Biol. Chem. 268, 16, 917-16, 928.

    Google Scholar 

  18. Fell, P. A. and Small, J. A. (1986), Fat synthesis in adipose tissue. An examination of stoichiometric constraints.Biochem. J. 238, 781–786.

    CAS  Google Scholar 

  19. Majewski, R. A. and Domach, M. M. (1990), Simple constrained-optimization view of acetate overflow inE. coli.Biotech. Bioeng. 35, 732–738.

    Article  CAS  Google Scholar 

  20. Papoutsakis, E. T. (1984), Equations and calculations for fermentation of butyric acid bacteria.Biotechnol. Bioeng. 26, 174–187.

    Article  CAS  Google Scholar 

  21. Papoutsakis, E. T. and Meyer, C. L. (1985a), Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations.Biotechnol. Bioeng. 27, 50–66.

    Article  CAS  Google Scholar 

  22. Papoutsakis, E. T. and Meyer, C. L. (1985b), Fermentations equations for propionicacid bacteria and production of assorted oxychemicals from various chemicals.Biotechnol. Bioeng. 27, 67–80.

    Article  CAS  Google Scholar 

  23. Satiawihardja, B., Cail, R. G., and Rogers, P. L. (1993), Kinetic analysis of L-lysine production by a fluoropyruvate sensitive mutant ofB. lactofermentum.Biotechnol. Letts. 15, 577–582.

    Article  CAS  Google Scholar 

  24. Tsai, S. P. and Lee, Y. H. (1988), Application of Gibbs’ rule and a simple pathway method to microbial stoichiometry.Biotechnol. Prog. 4(2), 82–88.

    Article  CAS  Google Scholar 

  25. Noorman, H. J., Heijnen, J. J., Luyben, K. Ch. A. M. (1991), Linear relations in microbial reaction systems: A general overview of their origin, form and use.Biotechnol. Bioeng. 38, 603–618.

    Article  CAS  Google Scholar 

  26. Oh, N. S. and Sernetz, M. (1993), Turnover characteristics in continuous L-lysine fermentation.Appl. Microbiol. Biotechnol. 39, 691–695.

    Article  CAS  Google Scholar 

  27. Savinell, J. M. and Palsson, B. O. (1992a), Network analysis of intermediary metabolism using linear optimization: I. Development of mathematical formalism.J. Theor. Biol. 154, 421–454.

    Article  CAS  Google Scholar 

  28. Savinell, J. M. and Palsson, B. O. (1992b), Network analysis of intermediary metabolism using linear optimization: II. Interpretation of hybridoma cell metabolism.J. Theor. Biol. 154, 455–473.

    Article  CAS  Google Scholar 

  29. Varma, A. and Palsson, B. O. (1993), Metabolic capabilities ofEscherichia coli. I. Synthesis of Biosynthetic Precursors and Cofactors.J. Theor. Biol. 165, 477–502.

    Article  CAS  Google Scholar 

  30. Varma, A., Boesch, B. W., and Palsson, B. O. (1993a), Biochemical production capabilities ofEscherichia coli.Biotechnol. Bioeng. 42, 59–73.

    Article  CAS  Google Scholar 

  31. Varma, A., Boesch, B. W., and Palsson, B. O. (1993b), Stoichiometric interpretation ofEscherichia coli glucose catabolism under various oxygénation rates.Appl. Environ. Microbiol. 59, 2465–2473.

    CAS  Google Scholar 

  32. Stephanopoulos, G. and Vallino, J. J. (1991), Network rigidity and metabolic engineering in metabolite overproduction.Science,252, 1675–1681.

    Article  CAS  Google Scholar 

  33. Kiss, R. D. and Stephanopoulos, G. (1991), Metabolic characterization of a L-lysineproducing strain by continuous culture.Biotechnol. Bioeng. 39, 565–574.

    Article  Google Scholar 

  34. Schaechter, Maaloe, E. O., and Kjeldgaard, N. O. (1958), Dependence on medium temperature of cell size and chemical composition during balanced growth ofSalmonella typhimurium.J. Gen. Microbiol. 19, 52–606.

    Google Scholar 

  35. Bremer, H. and Dennis, P. (1987), Modulation of chemical composition and other parameters of the cell by growth rate inEscherichia coli andSalmonella typhimurium.Cellular and molecular biology, Vol. 2, Neidhardt, F. C., ed. American Society for Microbiology, Washington, DC, pp. 1527–1542.

    Google Scholar 

  36. Churchward, G., Bremer, H., and Young, R. (1982), Macromolecular composition of bacteria.J. Theor. Biol. 94, 651–670.

    Article  CAS  Google Scholar 

  37. Cooper, S. and Helmstetter, C. (1981), Chromosome replication and the division cycle ofEscherichia coli.J. Bacteriol. 145, 1231–1238.

    Google Scholar 

  38. Schleif, R. (1967), Control of the production of ribosomal protein.J. Mol. Biol. 27, 41–55.

    Article  CAS  Google Scholar 

  39. Nielsen, J. and Villadsen, J. (1994),Bioreaction engineering principles, Plenum Press, New York, pp. 7–96.

    Google Scholar 

  40. Mathews, C. K. and van Holde, K. E. (1990),Biochemistry, Wokingham: The Benjamin/ Cummings, Redwood City, pp. 696–698.

    Google Scholar 

  41. Park, N. H. and Rogers, P. L. (1985), L-Phenylalanine production in a continuous culture using a hyperproducing mutant ofEscherichia coli K-12.Chem. Eng. Commun. 45, 185–196.

    Article  Google Scholar 

  42. Choi, Y. J. and Tribe, D. E. (1982), Continuous production of phenylalanine using anEscherichia coli regulatory mutant.Biotechnol. Letts. 4, 223–228.

    Article  CAS  Google Scholar 

  43. Chambost, J. P. and Fraenkel, D. G. (1980), The use of 6-14C-labelled glucose to assess futile cycling inEscherichia coli.J. Biol. Chem. 255, 2867–2869.

    CAS  Google Scholar 

  44. Daldal, F. and Raenkel, D. G. (1983), Assessment of a futile cycle involving reconversion of fructose-6-phosphate to fructose-l,6-biphosphate during gluconeogenic growth ofEscherichia coli.J. Bacteriol. 153, 390–394.

    CAS  Google Scholar 

  45. Tsuchida, T., Yoshinaga, F., Kubota, K., and Momose, H. (1975), Production of L-valine by 2-thiazolealanine resistant mutants derived from glutamic acid producing bacteria.Agri. Biol. Chem. 39, 1319–1322.

    CAS  Google Scholar 

  46. Ingraham, J. L., Maaloe, O., and Neidhardt, C. (1983),Growth of the bacterial cell. Sunderland, Mass: Sinauer Associates, Inc.

    Google Scholar 

  47. Neidhardt, F. C., ed., (1987),Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Vol 1 and 2, American Society for Microbiology, Washington, DC.

    Google Scholar 

  48. Yoshihara, Y., Kawahara, Y., Tanaka, Y., and Ikeda, S. (1992), Method for producing L-amino acids by fermentation. US Patent No. 5,164,307.

  49. Furukawa, S., Ozaki, A., Nakanishi, T., and Sugimoto, M. (1988b), Breeding of an L-isoleucine producer by protoplast fusion ofCorynebacterium glutamicum.Appl. Microbiol. Biotechnol. 29, 248–252.

    CAS  Google Scholar 

  50. Dunyak, S. A. and Cook, T. M. (1985), Continuous fermenter growth of a methionine-overproducing mutant ofCadida utilis.Appl. Microbiol. Biotechnol. 21, 182–382.

    Article  CAS  Google Scholar 

  51. Tanaka, T., Yamamoto, K., Towprayoon, S., Nakajima, H., Sonomoto, K., Yokozeki, K., Kubota, K., and Tanaka, A. (1989), Continuous production of serine by immobilized growingCorynebacterium glycinophilum cells.Appl. Microbiol. Biotechnol. 30, 564–568.

    Article  CAS  Google Scholar 

  52. Azuma, S., Tsunekawa, K., Okabe, M., Okamoto, R., and Aiba, S. (1993), Hyperproduction of L-tryptophan via fermentation with crystallization.Appl. Microbiol. Biotechnol. 39, 471–476.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

See, S.M., Dean, J.P. & Dervakos, G. On the topological features of optimal metabolic pathway regimes. Appl Biochem Biotechnol 60, 251–301 (1996). https://doi.org/10.1007/BF02783588

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783588

Index entries

Navigation