Skip to main content
Log in

Estimation of the optimal concentrations of residual sugar and cell growth rate for a fed-batch culture ofSaccharomyces cerevisiae

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Estimation of the optimal concentrations of residual sugar in medium for a fed-batch culture of Baker’s yeast has been studied and practiced. The concentrations, however, depended on different species and targets of the biomass, which was expected to be made. Kinetic changes of the residual phosphate salt in the medium conformed to a logarithmic process until the fourth hour during an 11-h culture. The parabolic method (see ref. 9 later in article) might be qualified to maintain the concentrations of residual sugar around 0.15 g/L. It was demonstrated that cell growth followed a sigmoid process during a fed-batch culture, because the cells consumed the nutrient with two metabolic pathways, one was for cell conversion and another was for non-cell conversion. With the parabolic method, we can estimate kinetics of cell growth and cell growth rate during the culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADY:

active dry yeast

GPR:

gas production rate

CY:

compressed yeast

RQ:

respiratory quotient

α:

cell conversion quotient (liter2): biomass produced from consumption of 1 g sugar

β:

non-cell conversion quotient (liter/g): byproducts produced from consumption of 1 g sugar

μ:

specific growth rate (h-1)

Ψ:

consumption parameter (g2)

x:

concentration of residual sugar in medium (g liter-1)

Vt :

total nutrient consumption rate (v/h)

Vi :

nutrient consumption rate on reproducible growth (v/h)

VJ :

nutrient consumption rate by Pasteur effect, Crabtree effect, and production rate of byproducts (v/h)

Vc :

cell growth rate (g/h)

Mc :

biomass (g)

t :

time (h)

References

  1. Crabtree, H. G. (1929),Biochem. J. 23, 536–545.

    CAS  Google Scholar 

  2. Tayeb, A. M., Ashour, I. A., and Mostafa, N. A. (1991),Energy Convers. Mgmt. 32, 491–497.

    Article  CAS  Google Scholar 

  3. Chen, S. Y. and Xiao, X. P. (1990), inBiochemistry of the Yeast, 1st Ed., Du Xiu-Ming and Shi Hong-Ying, eds., Academic Press of Shan Dong, Ji-Nan City, pp. 155–178.

    Google Scholar 

  4. Fredrickson, A. G., Megee, R. D., and Tsuchiya, H. M. (1970), inAdvances in Applied Microbiology, vol. 13, Perlman, D., ed., Academic, New York, pp. 419–464.

    Google Scholar 

  5. Monod, J. (1949),Ann. Rev. Microbiol. 3, 371–1949.

    Article  CAS  Google Scholar 

  6. Fang, B. S. and Lin, J. Q. (1992),Chin. J. Biotechnol. 8, 283–287.

    Google Scholar 

  7. Mignone, C. F. and Rossa, A. C. (1993),Proc. Biochem. 28, 405–410.

    Article  CAS  Google Scholar 

  8. Xu, H., Kang, Y. X., Jiang, H. X., Chen, X. D., Wang, L., and Zhou, J. (1989),Sci. Sin. 32, 822–829.

    Google Scholar 

  9. He Rong-Qiao, Xu Jung, Li Chuan-You and Zhao Xiu-An (1993),Appl. Biochem. Biotech. 41, 145–155.

    Article  Google Scholar 

  10. Oura, E., Suomalanen, H., and Viskari, R. B. (1982),Fermented Food, vol.7, Rose, A. H., ed., Academic, London, pp. 87–146.

    Google Scholar 

  11. Reed, G. and Peppier, H. J. (1973),Yeast Technology, AVI, Westport, CT, pp. 103–164.

    Google Scholar 

  12. Reed, G. (1982), inPrescott and Dunn’s Industrial Microbiology, AVI, Westport, CT, pp. 593–634.

    Google Scholar 

  13. Reiff, F. (1962),Die Hefen Bans II. Technologie Der Hefen. Verlag Hans Carl, Nurnberg, Backhe-fefabrikation, pp. 501–610.

    Google Scholar 

  14. White, J. (1954), inYeast Technology, Chapman and Hall, 1st ed., Jarrold, London, pp. 13–27.

    Google Scholar 

  15. Mazia, D. (1961), inThe Cell Biochemistry, Physiology, Morphology, Brachet, J. and Mirsky, A. E., eds., Academic, New York, pp. 98–111.

    Google Scholar 

  16. Park, S. C. and Baratti, J. (1991),Appl. Microbiol. Biotechnol. 35, 283–291.

    CAS  Google Scholar 

  17. He, R. Q., Zhang, G. J., and Yao, J. L. (1995),Biochem. Mol. Biol. Int. 36, 1–12.

    CAS  Google Scholar 

  18. Xu, H. and Kang, Y. X. (1985),Microbiology Acta Sinica 12, 187–190.

    Google Scholar 

  19. ld Health Organization (WHO)(1980), inManual of Basic Techniques for a Health Laboratory, Geneva, pp. 360–366.

  20. Felsher, A. R., Koch, R. B., and Lorsen, R. A. (1955),Cereal Chem. 32, 117–124.

    Google Scholar 

  21. Ballentine, R. (1957), inMethods in Enzymology, vol. 3, Colowick, S. and Kaplan, N. O., eds., Academic, New York, pp. 984.

    Google Scholar 

  22. Fiske, C. H. and Subbarow, Y. P. (1925),J. Biol. Chem. 66, 375–381.

    CAS  Google Scholar 

  23. Wang, D. I. C., Cooney, C. L., Demain, A. L., Dunnill, P., Humphrey, A. E., and Lilly, M. D. (1979), inFermentation and Enzyme Technology, John Wiley, New York, pp. 57–97.

    Google Scholar 

  24. Suomalainen, H. and Oura, E. (1971), inThe Yeast, vol. II, Ross, A. H. and Harrison, J. S., eds., Academic, London, 271–309.

    Google Scholar 

  25. He Rong-Qiao (1995),Exploration of Nature 14, 40–46.

    Google Scholar 

  26. Alberta, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1983), inMolecular Biology of the Cell, Garland, New York, pp. 611–672.

    Google Scholar 

  27. Ambrose, J. J. and Easty, D. M. (1971), inCell Biology, Thomas Nelson, London, pp. 289–290.

    Google Scholar 

  28. Edwards, C. (1981), The microbial cell cycle.Lecture in Microbiology at the University of Liverpool, Hong Kong, 1st ed., pp. 4–10.

  29. Nord, F. F. and Weiss, S. (1958), inThe Chemistry and Biology of Yeast, Cool, A. H., ed., Academic, New York, pp. 323–362.

    Google Scholar 

  30. Morris, E. O. (1958), inThe Chemistry and Biology of Yeast, Cook, A. H., ed., Academic, New York, pp. 251–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, RQ., Li, CY., Xu, J. et al. Estimation of the optimal concentrations of residual sugar and cell growth rate for a fed-batch culture ofSaccharomyces cerevisiae . Appl Biochem Biotechnol 60, 229–244 (1996). https://doi.org/10.1007/BF02783586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783586

Index entries

Navigation