Skip to main content
Log in

Antigen-antibody diffusion-limited binding kinetics for biosensors

A fractal analysis

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A fractal analysis is made for antigen-antibody binding kinetics for different biosensor applications available in the literature. Both types of examples are considered wherein: (1) the antigen is in solution and the antibody is immobilized on the fiberoptic surface, and (2) the antibody is in solution and the antigen is immobilized on the fiberoptic surface. For example, when the antibody is immobilized on the surface, an increase in the antigenClostridium botulinum toxin A concentration in solution leads to (1) a decrease in the fractal dimension value or state of disorder, and (2) a higher rate constant for binding on the fiberoptic surface. An analysis of the effect of the influence of different parameters on the fractal dimension values for a particular example, such as varying treatments or incubation procedures, helps provide insights into the conformational states and reactions occurring on the fiberoptic surface. The analysis of the different examples taken together provides novel physical insights into the state of “disorder” and reactions occurring on the surface. Such types of analysis should help contribute toward manipulating the reactions occurring on the fiberoptic surfaces in desired directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lowe, C. R. (1985),Biosensors 1, 3–16.

    Article  CAS  Google Scholar 

  2. Wise, D. L. and Wingard, L. B., Jr. (1991), inBiosensors with Fiberoptics, Wise, D. L. and Wingard, L. B., Jr. eds., Humana, Totowa, NJ, pp. vii-viii.

    Google Scholar 

  3. Scheller, F. W., Hintsche, R., Pfeifer, D., Schubert, D., Reiedl, K., and Kindervater, R. (1991),Sensor and Actuators 4, 197–206.

    Article  Google Scholar 

  4. Eddowes, E. (1987/1988), Biosensors3, 1–15.

  5. Place, J. F., Sutherland, R. M., and Dahne, C. (1985),Biosensors 1, 321–353.

    Article  CAS  Google Scholar 

  6. Harrick, N. J. (1967),Internal Reflection Spectroscopy, Wiley Interscience, New York.

    Google Scholar 

  7. Sutherland, R. M., Dahne, C., Place, J. F., and Ringrose, A. S. (1984),Clin. Chem. 30/9, 1533–1538.

    Google Scholar 

  8. Giaver, I. (1976),J. Immunol. 116, 766–771.

    Google Scholar 

  9. Bluestein, B. I., Craig, M., Slovacek, R., Stundtner, L., Uricouli, C., Walziak, I., and Luderer, A. (1991), inBiosensors with Fiberoptics, Wise, D. and Wingard, L. B., Jr., eds., Humana, Totowa, NJ, pp. 181–223.

    Google Scholar 

  10. Place, J. F., Sutherland, R. M., Riley, A., and Mangan, C. (1991), inBiosensors with Fiberoptics, Wise, D. L. and Wingard, L. B., Jr., eds., Humana, Totowa, NJ, pp. 253–291.

    Google Scholar 

  11. Stenberg, M., Stiblet L., and Nygren, H. A. (1986),J. Theor. Biol. 120, 129–142.

    Article  CAS  Google Scholar 

  12. Nygren, H. and Stenberg, M. (1985),J. Colloid Interf. Sci. 107, 560–566.

    Article  CAS  Google Scholar 

  13. Stenberg, M. and Nygren, H. A. (1982),Anal. Biochem. 127, 183–192.

    Article  CAS  Google Scholar 

  14. Sadana, A. and Sii, D. (1992),J. Colloid Interf. Sci. 151, 166–177.

    Article  CAS  Google Scholar 

  15. Sadana, A. and Sii, D. (1992),Biosens. Bioelectron. 7, 559–568.

    Article  CAS  Google Scholar 

  16. Sadana, A. and Madugula, A. (1993),Biotechnol. Prog. 9, 259–266.

    Article  CAS  Google Scholar 

  17. Avnir, D., Farin, D., and Pfeifer, P. (1985),J. Colloid Interf. Sci. 103, 112–123.

    Article  CAS  Google Scholar 

  18. Mandelbrot, B. B. (1982),The Fractal Geometry of Nature. Freeman, San Francisco.

    Google Scholar 

  19. Pfeifer, P. and Obert, M. (1989), inThe Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, Avnir, D., ed., Wiley, New York, pp. 11–43.

    Google Scholar 

  20. Kopelman, R. (1988),Science 241, 1620–1626.

    Article  CAS  Google Scholar 

  21. Cuypers, P. A., Willems, G. M., Kop, J. M., Jansen, M. P., and Hermens, W. T. (1987), inProteins at Interfaces. Physiochemical and Biochemical Studies, Brash, J. L. and Horbett, T. A., eds., American Chemical Society, Washington, DC, pp. 208–221.

    Google Scholar 

  22. Nygren, H. and Stenberg, M. (1990),Biophys. Chem. 38, 67–75.

    Article  CAS  Google Scholar 

  23. Matushihita, M. (1989), inThe Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, Avnir, D., ed., Wiley, New York, pp. 161–179.

    Google Scholar 

  24. Mandelbrot, B. B. (1989), inThe Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, Avnir, D., ed., Wiley, New York, pp. 3–9.

    Google Scholar 

  25. Daccord, G. (1989), inThe Fractal Approach to Heterogeneous Chemistry. Surfaces, Colloids, Polymers, Avnir, D., ed., Wiley, New York, pp. 187–197.

    Google Scholar 

  26. Douglas, J. F., Zhou, H. X., and Hubbard, J. B. (1994),Phys. Rev. E. 49, 5319–5331.

    Article  Google Scholar 

  27. Polya, G. and Szego, G. (1951),Isoperimetric Inequalities in Mathemathical Physics, Annals of Mathematical Studies, Princeton University Press, Princeton, NJ.

    Google Scholar 

  28. Guzmann, R. Z., Carbonell, R. G., and Kilpatrick, P. K. (1986),J. Colloid Interf. Sci. 114, 536–547.

    Article  Google Scholar 

  29. Hunter, J. R., Kilpatrick, P. K., and Carbonell, R. G. (1990),J. Colloid Interf. Sci. 150, 344–351.

    Google Scholar 

  30. Kondo, A. and Hagashitani, K. (1992),J. Colloid Interf. Sci. 150, 344–353.

    Article  CAS  Google Scholar 

  31. Havlin, S. (1989), inThe Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, Avnir, D., ed., Wiley, New York, pp. 251–269.

    Google Scholar 

  32. Giona, M. (1992),Chem. Eng. Sci. 47, 1503–1515.

    Article  CAS  Google Scholar 

  33. Patankar, S. V. (1980),Numerical Heat Transfer and Fluid Flow. McGraw Hill, New York.

    Google Scholar 

  34. Nygren, H. (1988),J. Immunol. Methods 114, 107–114.

    Article  CAS  Google Scholar 

  35. Di Cera, E. (1991)),J. Chem. Phys. 95, 5082–5086.

    Article  Google Scholar 

  36. Anderson, J. (1993), Unpublished Results, NIH Panel Meeting, Case Western Reserve University, Cleveland, OH, July.

  37. Nyikos, L. and Pajkossy, T. (1986),Electrochim. Acta 31, 1347–1350.

    Article  CAS  Google Scholar 

  38. Sahimi, M., McKarnin, M., Nordahl, T., and Tirrell, M. (1985),Phys. Rev. 32A, 590–595.

    Google Scholar 

  39. Annacker, L. W., Parson, R. P., and Kopelman, R. (1985),J. Phys. Chem. 89, 4758–4761.

    Article  Google Scholar 

  40. Newhouse, J. S., Argyrakis, P., and Kopelman, R. (1980),Chem. Phys. Lett. 107, 48–52.

    Article  Google Scholar 

  41. Evesque, P. and Duran, J. (1984),J. Chem. Phys. 80, 3016–3030.

    Article  CAS  Google Scholar 

  42. Malhotra, A. and Sadana, A. (1989),Biotechnol. Bioeng. 30, 1041–1056.

    Google Scholar 

  43. DeGennes, P. G. (1982),Radiat. Phys. Chem. 22, 193–196.

    Google Scholar 

  44. Pfeifer, P., Avnir, D., and Farin, D. J. (1984),J. Colloid Interf. Sci. 103, 112–123.

    Google Scholar 

  45. Pfeifer, P., Avnir, D., and Farin, D. J. (1984),Nature (Lond) 308(5956), 261–263.

    Article  Google Scholar 

  46. Anderson, F. P. and Miller, W. G. (1988),Clin. Chem. 34, 1417–1421.

    CAS  Google Scholar 

  47. Birkmeyer, R. C., Diaco, R., Hutson, D. K., Lau, H. P., Miller, W. K., Neelkantan, N. V., Pankratz, T. J., Tseng, S. Y., Vickery, D. K., and Yang, E. K. (1987),Clin. Chem. 33, 1543–1547.

    CAS  Google Scholar 

  48. Ogert, R. A., Brown, J. E., Singh, B. R., Shriver-Lake, L. C., and Ligler, F. S. (1992),Anal. Biochem. 205, 306–312.

    Article  CAS  Google Scholar 

  49. Tromberg, B. J., Sepaniak, M. J., Vo-Dinh, T., and Griffin, G. D. (1987),Anal. Chem. 59, 1226–1230.

    Article  CAS  Google Scholar 

  50. Mason, D. W., and Williams, A. F. (1980),Biochem. J. 187, 1–20.

    CAS  Google Scholar 

  51. Sigmaplot (1993),Scientific Graphing Software, User’s Manual. Jandel Scientific, San Rafael, CA.

    Google Scholar 

  52. Rodgers, P. C. (1984), inPractical Immunoassay: The State of the Art, Butt, W. R., ed., Marcel Dekker, New York, Chapter 10.

    Google Scholar 

  53. Letarte-Muirhead, M., Acton, R. T., and Williams, A. F. (1974),Biochem. J. 143, 51–61.

    CAS  Google Scholar 

  54. Letarte-Muirhead, M., Barclay, A. N., and Williams, A. F. (1975),Biochem. J. 151, 685–697.

    CAS  Google Scholar 

  55. Morris, R. J. and Williams, A. F. (1977),Eur. J. Immunol. 7(6), 360–366.

    Article  CAS  Google Scholar 

  56. Fabre, J. W. and Williams, A. F. (1977),Transplantation 23, 349–359.

    Article  CAS  Google Scholar 

  57. MacDonald, M. E., Letarte, M., and Bernstein, A. (1978),J. Cell. Physiol. 96, 291–302.

    Article  CAS  Google Scholar 

  58. Dalchau, R. and Fabre, J. W. (1979),J. Exp. Med. 149, 576–591.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadana, A., Beelaram, A.M. Antigen-antibody diffusion-limited binding kinetics for biosensors. Appl Biochem Biotechnol 59, 259–281 (1996). https://doi.org/10.1007/BF02783569

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783569

Index Entries

Navigation