Skip to main content
Log in

Catalysis of novel enzymatic iodide oxidation by fungal laccase

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A fungal laccase (Myceliophthom thermophila) has been shown to function as an iodide oxidase. Unlike other halides which interact with the type 2 copper site and are inhibitors for the laccase, iodide interacts with the type 1 copper site and serves as a substrate capable of donating an electron to the laccase. Under anaerobic conditions, the interaction between the laccase and iodide results in the reduction of the laccase type 1 copper and the concomitant oxidation of iodide to form iodide. In aerated solutions, the laccase catalyzes the oxidation of iodide to iodine and the concomitant reduction of dioxygen to water. The reaction exhibits typical Michaelis kinetics with aK m of 0.16 ± 0.02M and ak cat of 2.7 ± 0.2 turnovers per min at the optimal pH (3.4). The catalysis can be enhanced by 2,2′-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid), which shuttles electrons rapidly between iodide and the laccase. Bilirubin oxidase also demonstrates significant iodide oxidase activity, suggesting that the property could be a common feature for copper-containing oxidases. Possible industrial and medicinal applications for a laccase-based iodine production system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Reinhammar, B. and Malmstrom, B. G. (1981), inMetal Ions in Biology: Copper Proteins, vol. 3, Spiro, T. G., ed., Wiley, New York, pp. 109–149.

    Google Scholar 

  2. Farver, O. and Pecht, I. (1984), inCopper Proteins and Copper Enzymes, vol. 1, Lontie, R., ed., CRC Press, Boca Raton, pp. 183–214.

    Google Scholar 

  3. Mayer, A. and Harel, E. (1978),Phytochem. 18, 193–215.

    Article  Google Scholar 

  4. Mayer, A. (1987),Phytochem. 26, 11–20.

    Article  Google Scholar 

  5. Yaropolov, A. I., Skorobogat’ko, O. V., Vartanov, S. S., and Varfolomeyev, S. D. (1994),Appl. Biochem. Biotech. 49, 257–280.

    Article  CAS  Google Scholar 

  6. Curzon, G. and Speyer, B. E. (1967),Biochem. J. 105, 243–250.

    CAS  Google Scholar 

  7. Koudelka, G. B. and Ettinger, M. J. (1988),J. Biol. Chem. 263, 3698–3705.

    CAS  Google Scholar 

  8. Winkler, M. E., Spira, D. J., LuBien, C. D., Thamann, T. J., and Solomon, E. I. (1982),Biochem. Biophys. Res. Comm. 107, 727–734.

    Article  CAS  Google Scholar 

  9. Naki, A. and Varfolomeev, S. D. (1981),Biokhimiya 46, 1694–1702.

    Google Scholar 

  10. Murao, S. and Tanaka, N. (1981),Agric. Biol. Chem. 45, 2383–2384.

    CAS  Google Scholar 

  11. Hiromi, K., Tamaguchi, Y., Sugiura, Y., Iwamoto, H., and Hirose, J. (1992),Biosci. Biotech. Biochem. 56, 1349–1350.

    Article  CAS  Google Scholar 

  12. Xu, F. (1995),FASEB J. 9, Abs498.

  13. Berka, B. M., Thompson, S. A., Brown, S. H., Golightly, E. J., Brown, K. M., and Xu, F. (1994), abstr. Western Regional American Chemical Society Meeting and Pacific Conference, October 19–22, Sacramento, CA. A full report is in preparation.

  14. Ramette, R. W. and Sandford, R. W. (1965),J. Am. Chem. Soc. 87, 5001–5005.

    Article  CAS  Google Scholar 

  15. Childs, R. E. and Bardsley, W. G. (1975),Biochem. J. 145, 93–103.

    CAS  Google Scholar 

  16. Xu, F. Unpublished data.

  17. Vanysek, P. (1993), inHandbook of Chemistry and Physics, Lide, D. R., ed., CRC Press, Boca Raton, pp. 8–19.

    Google Scholar 

  18. Bard, A. J., Parsons, R., and Jordan, J. (1985),Standard Potentials in Aqueous Solution, Marcel Dekker, New York, p. 292.

    Google Scholar 

  19. Sanchez-Ferrer, A., Rodriguez-Lopoz, J. N., Garcia-Canovas, F., and Garcia-Carmona, F. (1995),Biochim. Biophys. Acta 1247, 1–11.

    Google Scholar 

  20. Thomas, J. A. and Hager, L. P. (1969),Biochem. Biophys. Res. Comm. 35, 444–450.

    Article  CAS  Google Scholar 

  21. Neidleman, S. L. and Geigert, J. (1981), U.S. Patent4,282,324.

  22. Kessler, J. H. (1991), U.S. Patent 4,996,146.

  23. Xu, F., Shin, W., Brown, S. H., Wahleithner, J.A., Sundaram, U., and Solomon, E. I. (1996),Biochim. Biophys. Acta 1292, 303–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F. Catalysis of novel enzymatic iodide oxidation by fungal laccase. Appl Biochem Biotechnol 59, 221–230 (1996). https://doi.org/10.1007/BF02783566

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783566

Index Entries

Navigation