Skip to main content
Log in

High-Alkaline protease fromBacillus PB92 entrapped in calcium alginate gel

Physicochemical and microscopic studies

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

High-alkaline protease (HAP) has been entrapped in Manugel DMB (an alginate gel) and assayed with two sizes and types of substrates: neutral protein casein and synthetic chromogenic tripeptide substrate, Z-Gly-Pro-Cit-PNA. Increasing the concentration of calcium chloride used for capsule formation decreased the measured enzyme activity with both substrates. Capsules were found to be stable in water for long periods of time, but they dissolved in both phosphate and carbonate-bicarbonate buffers. The pH vs activity profiles of encapsulated enzyme showed pH optima between 10 and 11 with both substrates. The calcium alginate matrix surrounding the enzyme was quite effective in stabilizing the enzyme at 20–25 °C and even more so at 4°C. Enzyme stability at 50 °C was quite impressive, some enzyme activity being evident even after remaining for 1 wk at this temperature in water. Increasing concentrations of sodium dodecyl sulfate (SDS) were also found to inhibit the protease progressively, whereas a polyhexamethylene biguanidium chloride (PHMBH+Cl-) and SDS:PHMBH+Cl- combination showed the opposite effect.

Optical microscopy, especially polarized light microscopy, provided a sensitive physical means of ascertaining some of the structural properties (sphericity, disorganization or organization, distinct layer enveloping the capsules, intensity of the maltese cross) of the capsules with and without enzyme before and after different chemical treatments and the presence or absense of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakanishi, J., Kita, Y., and Isono, M. (1974),Agr. Biol. Chem. 38(1), 37.

    CAS  Google Scholar 

  2. Vedder, A. (1934),Antonie Van Leeuwenhoek, vol. 1, 141.

  3. Aunstrup, K., Anderson, O., and Oyttrup, H. (1968), British Patent No. 1,243,784.

  4. Horikoshi, K. and Ikeda, Y. (1977), US Patent No. 4,052,262.

  5. Aunstrup, K. (1980), inMicrobial Enzymes and Bioconversions, Rose, A. H., ed., Academic, New York, p. 5O.

    Google Scholar 

  6. Morhihara, K. (1974),Adv. Enzym. 41.

  7. Markland, F. S. and Smith, E. L. (1971),The Enzymes, vol 3, 3rd ed., Boyer, P., ed., Academic, New York, London, p. 561.

    Google Scholar 

  8. Nijenhuis, B. (1977), US Patent No. 4,002,572.

  9. Martinek, K., Mozhaev, V. V., and Berezin, I. V. (1980), inEnzyme Engineering, Lemuel, B., Wingard, Jr., and Berezin, I. V., ed., Plenum, New York and London.

    Google Scholar 

  10. Chapelle, E. W., Rich, E., and MacLeod, N. H. (1967),Science 155, 1287.

    Article  Google Scholar 

  11. Horigome, T., Kasal, H., and Okuyama, T. (1974),J. Biochem. 75, 299.

    CAS  Google Scholar 

  12. Schreider, Z., Stroinski, A., and Pawelkiewicz, H. (1968),Bull. Acad. Polan. Sci. Ser. Sci. Biol. 16, 203.

    Google Scholar 

  13. Norris, R. D. and Pawelkiewicz, H. (1975),Phytochemistry 14, 1701.

    Article  CAS  Google Scholar 

  14. Goldmacher, V. S. (1977), Ph.D. Thesis, Lomonosov. State University, Moscow.

    Google Scholar 

  15. Goldmacher, V. S., Klibanov, A. M., and Martinek, K., Vestnik, M. G. U. (1978),Bull. Moscow University,19(3).

  16. Martinek, K., Goldmacher, V. S., Mishin, A., Torchinin, V. P., Smirnov, V. N., and Brezin, I. V. (1978),Dokl. Akad. Nauk-SSSR 239, 227.

    CAS  Google Scholar 

  17. Kierstan, M. and Bucke, C. (1977),Biotechnol. Bioeng. 19, 387.

    Article  CAS  Google Scholar 

  18. Paul, F. and Vignais, P. M. (1980),Enzyme Microb. Technol. 2, 281.

    Article  CAS  Google Scholar 

  19. Gisby, P. E. and Hall, D. (1980),Nature 287, 251.

    Article  CAS  Google Scholar 

  20. Brodelius, P. and Mosbach, K. (1982),Adv. Appl. Microbiol. 28, 1.

    Article  CAS  Google Scholar 

  21. Vorlop, K. D. and Klein, J. (1983), inNew Developments in the Field of Cell Immobilization in Formation of Biocatalysts by Ionotropic Gelation, 3rd Rotenburg Symposium-Enzyme Technology, Springer, New York, Wien.

    Google Scholar 

  22. Brodelius, P. (1985), inImmobilized Cells and Enzymes: A Practical Approach, Woodwards, J., ed., IRL Press, Oxford.

    Google Scholar 

  23. Kierstan, M., Darcy, G., and Reilly, J. (1982),Biotechnol. Bioeng. 24, 1507.

    Article  CAS  Google Scholar 

  24. Klein, J., Stock, J., and Vorlop, K. D. (1983),J. Appl. Microbiol. Biotechnol. 18, 86.

    Article  CAS  Google Scholar 

  25. Klein, J. and Washausen, P. (1979),Dechema. Monogr. 84, 277.

    CAS  Google Scholar 

  26. Cheetham, P. S. J. (1979),Enzyme Microb. Technol. 1, 183.

    Article  CAS  Google Scholar 

  27. Klein, J. and Eng, H. (1979),Dechema. Monogr. 84, 292.

    CAS  Google Scholar 

  28. Boukovalas, J. (1980), Ph.D. Thesis, University of Birmingham.

  29. Dhariwal, M. S. (1983), Ph.D. Thesis, University of Birmingham.

  30. Beck, E. A. (1977), inNew Method for the Analysis of Chromogenic Substrates, Witt, I., ed., De Gruyter, W., Berlin, New York.

    Google Scholar 

  31. Blake, N. (1983), Ph.D. Thesis, University of Birmingham.

  32. Putnam, F. W. and Neurath, H. (1945),J. Biol. Chem. 159, 195.

    CAS  Google Scholar 

  33. Hunter, M. J. and McDuffie, F. C. (1959),J. Am. Chem. Soc. 81, 1400.

    Article  CAS  Google Scholar 

  34. Reynolds, J. A., Herbert, S., Polet, H., and Steinhardt, J. (1967),Biochemistry 6, 737.

    Article  Google Scholar 

  35. Imoto, T., Sumi, Si., Tsuru, M., and Yagishita, K. (1979),Agric. Biol. Chem. 43(9), 1809.

    CAS  Google Scholar 

  36. Roig, M. G., Rashid, D. H., and Kennedy, J. F. (in press),Curb. Polym.

  37. Adam, W. E. and Barrat, C. (1973), US Patent No. 3,773,674.

  38. Miyaka, H. (1977), Japan Patent No. 7,048,49.

  39. Knapsach, A. G. (1971),Ger. Offen. 1958, 104.

    Google Scholar 

  40. Eisai, Co. Ltd. (1969), Japan Patent No. 8072.

  41. Stauff, J. and Metrotra, K. N. (1961),Kolloid Z. 176, 1.

    Article  CAS  Google Scholar 

  42. Timasheff, S. N., Lee, J. C., Plttz, E. P., and Tweedy, N. (1976),J. Colloid Interfac. Sci. 55, 658.

    Article  CAS  Google Scholar 

  43. Bull, H. B. and Breese, K. (1978),Biopolymers 17, 2121.

    Article  CAS  Google Scholar 

  44. Schreider, W. (1972), German Patent No. 2,058,826.

  45. Jarabak, J., Seeds, A. E., and Talalay, P. (1966),Biochemistry 5, 1269.

    Article  CAS  Google Scholar 

  46. Ruwart, M. J. and Suelter, C. H. (1971),J. Biol. Chem. 246, 5990.

    CAS  Google Scholar 

  47. Gerlsma, S. Y. (1968),J. Biol. Chem. 243, 957.

    CAS  Google Scholar 

  48. Gerlsma, S. Y. (1970),Eur. J. Biochem. 14, 150.

    Article  CAS  Google Scholar 

  49. Gerlsma, S. Y. and Stuur, E. R. (1972),Int. J. Peptide Protein Res. 4, 377.

    Article  CAS  Google Scholar 

  50. Gerlsma, S. Y. and Sturr, E. R. (1974),Int. J. Peptide Protein Res. 6, 65.

    Article  CAS  Google Scholar 

  51. Avrameas, S., Brown, G., Selegny, E., and Thomas, D. (1969),Ger. Offen. 1, 915, 970.

    Google Scholar 

  52. Hartmeier, W. (1984), Process.Biochem. 40.

  53. Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., and Thorn, D. (1973),FEBS Lett. 32, 195.

    Article  CAS  Google Scholar 

  54. Kohn, R. (1975),Pure Appl. Chem. 42, 371.

    CAS  Google Scholar 

  55. McDowell, R. H. (1977), inProperties of Alginates, Alginate Industries Limited, London.

    Google Scholar 

  56. Hideo, T., Matsumura, M., and Veliky, I. A. (1984),Biotech. Bioeng. 26, 53.

    Article  Google Scholar 

  57. Klein, J. and Manecke, G. (1982),Enzyme Eng. 6, 181.

    CAS  Google Scholar 

  58. Fukushima, S. and Hanai, S. (1982), inEnzyme Engineering, Fukui, S. and Wingard, L. B., Jr., eds., Plenum, New York, p. 347.

    Google Scholar 

  59. Matsubara, H. and Feder, J. (1971),The Enzymes, vol. 3, 3rd ed., Boyer, P., ed., Academic, New York, London, p. 721.

    Google Scholar 

  60. Coughlin, L. J. (1970), inHandbook Pulp and Paper Technology, Britt, X. W., ed., Van Nostrand Reinhold, New York, p. 631.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roig, M.G., Rashid, D.H. & Kennedy, J.F. High-Alkaline protease fromBacillus PB92 entrapped in calcium alginate gel. Appl Biochem Biotechnol 55, 95–121 (1995). https://doi.org/10.1007/BF02783552

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783552

Index Entries

Navigation