Advertisement

Applied Biochemistry and Biotechnology

, Volume 53, Issue 1, pp 75–81 | Cite as

Sulfate decomposition by bacterial leaching

  • Nuran Deveci
  • Cüneyt Göktug Delaloglu
Article
  • 32 Downloads

Abstract

Sulfate disposal is the main problem of many industrial effluents, such as excess sulfuric acid, gypsum, coal desulfurization byproducts, acid-mine waters, and general metallurgical effluents. It has been established that sulfate present in wastes can be converted to elemental sulfur by bacterial mutualism. This study presents the results of an investigation of the industrial feasibility of utilizing a biological system capable of converting hydrous calcium sulfate (gypsum) to elemental sulfur. Gypsum, which was used in this study, is a byproduct of the fertilizer industry. The biological system is referred to as a bacterial mutualism, and involvesDesulfovibrio desulfuricans for sulfate conversion andChlorobium thiosulfatophilum for hydrogen sulfide conversion. Bacterial mutualism and utilization of sulfate were investigated by means of a two-stage anaerobic system. In the first stage, a gas purge system was used for sulfate conversion to sulfide, and it was found that maximum conversion is 34%. In the second stage, a static culture system was used for sulfide conversion to sulfur with a conversion of 92%.

Index entries

Gypsum sulfate bioconversion Desulfovibrio desulfuricans gas purge system sulfide bioconversion Chlorobium thiosulfatophilum static culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deveci, N. (1991),Microbial Conversion of Gypsum to Elemental Sulfur, Istanbul Technical University Research and Development Project, Istanbul, Turkey.Google Scholar
  2. 2.
    Postgate, J. R. (1968), inInorganic Sulfur Chemistry, Nickless, G., ed., Elsevier, New York, p. 259.Google Scholar
  3. 3.
    Huising, J., McNeill, J. J., and Matrone, G. (1974),Appl. Microbiol. 28, 489.Google Scholar
  4. 4.
    Phening, N., Niddle, F., and Truper, H. G. (1980),Appl. Microbiol. 27, 929.Google Scholar
  5. 5.
    Karavaiko, G. I. (1988), inBiogeotechnology of Metals-Manual, Karavaiko, G. I., Rossi, G., Agate, A. D., Groudev, S. N., and Avakyan, Z. A., eds., Centre for International Projects GKNT, Moscow, p. 54.Google Scholar
  6. 6.
    Grimm, D. T., Cork, D. J., and Uphaus, R. A. (1984),Dev. Ind. Microbiol. 25, 709.Google Scholar
  7. 7.
    Cork, D. J. and Cusanovich, M. A. (1974),Dev. Ind. Microbiol. 20, 591.Google Scholar
  8. 8.
    Cork, D. J. and Cusanovich, M. A. (1978), inMetallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, Murr, L. E., Torma, A. E., and Bierley, J. A., eds., Academic, New York, p. 207.Google Scholar
  9. 9.
    Gest, H., San Pietro, A., and Vernon, L. P. (1963),Bacterial Photosynthesis, Antioch, Yellow Spring, OH, p. 501.Google Scholar
  10. 10.
    Cork, D. J., Garunas, R., and Sajjad, A. (1983),App Environ. Microbiol. 45, 913.Google Scholar
  11. 11.
    Claus, D., Lack, P., and Neu, B., eds., (1983),Deutsche Sammlung Von Microorganismen-Catalogue of Strains, Gessellschaft für Biotechnologische Forschung mbH, Braunschweig, p. 272.Google Scholar
  12. 12.
    Deveci, N., Delaloglu, C. G., Güvenilir, Y. A., and Dogan, Z. (1991), inIX International Symposium Biohydrometallurgy 91-Book of Proceedings, Duarte, J. D. and Lawrence, R. W., eds., Forbitec, Troia-Portugal, p. 3.27.Google Scholar
  13. 13.
    Welcher, E. J. (1963),Standard Methods of Chemical Analysis, D. Van Nostrand Co., New York, p. 201.Google Scholar
  14. 14.
    Kolthoff, I. M. and Sandel, E. B. (1954),Textbook of Quantitative Inorganic Analysis, Macmillan, London, p. 614.Google Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Nuran Deveci
    • 1
  • Cüneyt Göktug Delaloglu
    • 1
  1. 1.Chemical Engineering DepartmentIstanbul Technical UniversityMaslak, IstanbulTurkey

Personalised recommendations