Advertisement

Applied Biochemistry and Biotechnology

, Volume 50, Issue 2, pp 109–125 | Cite as

Simultaneous measurement of glucose and glutamine in aqueous solutions by near infrared spectroscopy

  • Hoeil Chung
  • Mark A. Arnold
  • Martin Rhiel
  • David W. Murhammer
Article

Abstract

A method is described for measuring the concentrations of both glucose and glutamine in binary mixtures from near infrared (NIR) absorption spectra. Spectra are collected over the range from 5000–4000/cm (2.0–2.5μm) with a 1-mm optical path length. Glucose absorbance features at 4710, 4400, and 4300/cm and glutamine features at 4700, 4580, and 4390/cm provide the analytical information required for the measurement. Multivariate calibration models are generated by using partial least squares (PLS) regression alone and PLS regression combined with a preprocessing digital Fourier filtering step. The ideal number of PLS factors and spectral range are identified separately for each analyte. In addition, the optimum Fourier filter parameters are established for both compounds. The best overall analytical performance is obtained by combining Fourier filtering and PLS regression. Glucose measurements are established over the concentration range from 1.66–59.91 mM, with a standard error of prediction (SEP) of 0.32 mM and a mean percent error of 1.84%. Glutamine can be measured over the concentration range from 1.10–30.65 mM with a SEP of 0.75 mM and a mean percent error of 6.67%. These results demonstrate the analytical utility of NIR spectroscopy for monitoring glucose and glutamine levels in mammalian and insect cell cultures.

Index Entries

Glucose glutamine near infrared (NIR) Partial Least Squares (PLS) regression digital Fourier filter fed-batch bioreactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kleman, G. L., Chalmers, J. J., Luli, G. W., and Strohl, W. R. (1991),Appl. Environ. Microbiol. 57, 910–917.Google Scholar
  2. 2.
    Dairaku, K., Yamasaki, Y., Kuri, K., Shioya, S., and Takamatsu, T. (1981),Biotechnol. Bioeng. 23, 2069–2081.CrossRefGoogle Scholar
  3. 3.
    Reuveny, S., Kim, Y. J., Kemp, C. W., and Shiloach, J. (1993),Biotechnol. Bioeng. 42, 235–239.CrossRefGoogle Scholar
  4. 4.
    Fike, R., Kubiak, J., Price, P., and Jayme, D. (1993),BioPharm 6(8), 49–54.Google Scholar
  5. 5.
    Reuveny, S., Kemp, C. W., Eppstein, L., and Shiloach, J. (1992),Ann. NY Acad. Sci. 665, 230–237.CrossRefGoogle Scholar
  6. 6.
    Glacken, M. W., Fleischaker, R. J., and Sinskey, A. J. (1986),Biotechnol. Bioeng. 28, 1376–1389.CrossRefGoogle Scholar
  7. 7.
    Fertig, G., Rahn, H. P., Angermann, A., Kloppinger, M., and Miltenburger, H. G. (1993),Cytotechnology 11, 67–75.CrossRefGoogle Scholar
  8. 8.
    Takazawa, Y. and Tokashiri, M. (1989),Appl. Microbiol. Biotechnol. 32, 280–284.CrossRefGoogle Scholar
  9. 9.
    Cattaneo, M. V. and Luong, J. H. T. (1993),Biotechnol. Bioeng. 41, 659–665.CrossRefGoogle Scholar
  10. 10.
    Burns, D. A. and Ciurczak, E. W. (1990),Handbook of Near-Infrared Analysis, Marcel Dekker, New York.Google Scholar
  11. 11.
    Wetzel, D. L. (1983),Anal. Chem. 55, 1165A-1176A.CrossRefGoogle Scholar
  12. 12.
    Dotzlaw, G. and Weiss, M. D. (1993),Chem. Eng. Prog. 89(9), 42–45.Google Scholar
  13. 13.
    Reach, G. and Wilson, G. S. (1992),Anal. Chem. 64, 381A-386A.CrossRefGoogle Scholar
  14. 14.
    He, M., Lorr, D., and Wang, N. S. (1993),Near-infrared spectroscopy for on-line bioreactor monitoring, presented at the 1993 AIChE National Meeting, St. Louis, MO.Google Scholar
  15. 15.
    Geladi, P. and Kowalski, B. (1986),Anal. Chim. Acta. 185, 1–17.CrossRefGoogle Scholar
  16. 16.
    Beebe, K. R. and Kowalski, B. (1987),Anal. Chem. 59, 1007A-1018A.CrossRefGoogle Scholar
  17. 17.
    Haaland, D. M. and Thomas, E. V. (1988),Anal. Chem. 60, 1193–1202.CrossRefGoogle Scholar
  18. 18.
    Arnold, M. A. and Small, G. W. (1990),Anal. Chem. 62, 1457–1464.CrossRefGoogle Scholar
  19. 19.
    Small, G. W., Marquardt, L. A. and Arnold, M. A. (1993),Anal. Chem. 65, 3271–3278.CrossRefGoogle Scholar
  20. 20.
    Arnold, M. A., Marquardt, L. A., and Small G. W. (1993),Anal. Chem. 65, 3279–3289.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Hoeil Chung
    • 1
  • Mark A. Arnold
    • 1
  • Martin Rhiel
    • 2
  • David W. Murhammer
    • 2
  1. 1.Department of ChemistryThe University of IowaIowa City
  2. 2.Department of Chemical and Biochemical EngineeringThe University of IowaIowa City

Personalised recommendations