Il Nuovo Cimento (1955-1965)

, Volume 37, Issue 4, pp 1407–1421 | Cite as

The high-energy limit of the statistical model



The sum over allN-particle phase space integrals forN ⩾ 3\(\Omega _R (P) = \sum\limits_{N = 3}^\infty {\frac{{(2mR^3 )^N }}{{N!}}\int {...\int {\prod\limits_{t = 1}^N {\frac{{d^3 p_i }}{{2p_{i0} }}} } } } \delta (4)(\sum\limits_{i = 1}^N {p_i - P} )\) with interaction factorR is evaluated for high energiesW= √P2≫m, using the limit-theorem formalism of statistics. Applied to the calculation of the multiplicity our result is shown to yield asymptotically Fermi’s thermodynamic limit.


Si valuta la somma sopra tutti gli integrali dello spazio delle fasi perN particelle, oonN⩾3,\(\Omega _R (P) = \sum\limits_{N = 3}^\infty {\frac{{(2mR^3 )^N }}{{N!}}\int {...\int {\prod\limits_{t = 1}^N {\frac{{d^3 p_i }}{{2p_{i0} }}} } } } \delta (4)(\sum\limits_{i = 1}^N {p_i - P} )\)con il fattoreR di interazione, per alte energieW=√P2≫m, usando il formalismo statistico del teorema limite. Si mostra che il presente risultato, applicato al calcolo della molteplicità, porta asintoticamente al limite termodinamioo di Fermi.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    E. Fermi:Progr. Theor. Phys. (Japan),1, 570 (1950).MathSciNetADSCrossRefGoogle Scholar
  2. (2).
    P. P. Srivastava and G. Sudaeshan:Phys. Rev.,110, 765 (1958). For further literature see M. Kretzschmar :Ann. Rev. Nucl. Sci.,11, 1 (1961).ADSCrossRefGoogle Scholar
  3. (3).
    F. Lueçat and P. Mazur:Nuovo Cimento,31, 140 (1964).CrossRefGoogle Scholar
  4. (4).
    A. I. Khinchik:Mathem. Foundations of Statistical Mechanics (New York, 1949).Google Scholar
  5. (5).
    P. Mazub and J. Van dee Linden:Journ. Math. Phys.,4, 271 (1963).ADSCrossRefMATHGoogle Scholar
  6. (6).
    M. Neumann:An. Acad. Brasil. Cienc.,31, 361, 487 (1959); H. Satz:Forts,d. Phys.,11, 445 (1963); L. Van Hove:Nuovo Cimento,28, 798 (1963).Google Scholar
  7. (7).
    H. Joos and H. Satz:Nuovo Cimento,34, 619 (1964).MathSciNetCrossRefGoogle Scholar
  8. (8).
    A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi:Higher Trascendental Functions, vol. 2 (New York, 1953).Google Scholar
  9. (9).
    Seee.g. L. Landau and E. Lifschitz:Statistical Physios (London, 1958).Google Scholar
  10. (10).
    Seee.g. M. G. Kendall :The Advanced Theory of Statistics I (London, 1952).Google Scholar
  11. (11).
    M. Frechet and J. Shohat:Trans. Am. Math. Soc., 33 (1931). The N-dimensional generalization is given by E. K. Haviland:Am. Journ. Math.,56, 625 (1934).Google Scholar
  12. (12).
    Seee.g. H. Cramée:Mathematical Methods of Statistics (Princeton, 1961).Google Scholar

Copyright information

© Società Italiana di Fisica 1965

Authors and Affiliations

  • H. Satz
    • 1
  1. 1.Deutsches Elektronen-Synchrotron (DESY)Hamburg

Personalised recommendations