Biological Trace Element Research

, Volume 59, Issue 1–3, pp 63–74 | Cite as

Multielemental analysis of human fetal tissues using inductively coupled plasma-mass spectrometry

  • Yves Gélinas
  • Julie Lafond
  • Jean-Pierre Schmit
Original Articles


Inductively coupled plasma-mass spectrometry (ICP-MS) was used to study the distribution of 26 major and trace elements in six tissues from 21 human fetuses aged 16–22 wk. Brain, lung, spleen, kidney, heart, and liver were analyzed following a microwave oven digestion step carried out according to clean techniques designed for ultratrace metal analyses. Precision and accuracy controls were conducted using standard reference material #1577b Bovine Liver. Significant differences among tissues were found for most of the elements. Essential trace elements seem to be increasingly retained as fetal tissues mature and become physiologically functional. The ranges of concentrations measured in fetal tissues at this stage of development are generally lower and much narrower than in adult tissues. The age of the fetus, which is not given in most studies, as well as the different techniques and levels of quality assurance could be responsible for the discrepancies in the trace metal concentrations reported here and in the literature. Intratissue homogeneity was also assessed in five human fetal brains. Frontal, occipital, parietal and temporal lobes, striatum, hippocampus, and thalamus were isolated and analyzed separately. No significant differences were found in the distribution of any of the elements at this stage of development. Because of the relatively narrow ranges of concentrations found for most elements, we believe that the results presented in this study represent the inorganic fingerprint of the main tissues of normal fetuses at midpregnancy for the Greater Montreal area.

Index Entries

Trace metal human fetus development inductively coupled plasma-mass spectrometry biological tissue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Perlman, Périnatal aspects of trace metal metabolism, inMetabolism of Trace Metals in Man: Developmental Aspects, vol. 1, O. M. Rennert and W. Y. Chan, eds., CRC, Boca Raton, FL, pp. 51–62 (1984).Google Scholar
  2. 2.
    W. Mertz, ed.,Trace Elements in Human and Animal Nutrition, vols. 1 and 2, Academic, New York, pp. 487 and 479 (1987).Google Scholar
  3. 3.
    T. W. Clarkson, G. F. Nordberg, and P. R. Sager, eds.,Reproductive and Developmental Toxicity of Metals. Plenum, New York, p. 845 (1983).Google Scholar
  4. 4.
    R. N. Sah, Plasma source mass spectrometric analysis of biological and environmental samples: Dealing with potential interferences,Appl. Spectrosc. Rev. 30, 35–80 (1995).CrossRefGoogle Scholar
  5. 5.
    C. Vandecasteele, H. Vanhoe and R. Dams, ICP-MS analysis of biological samples,J. Anal. At. Spectrom. 8, 781–786 (1993).CrossRefGoogle Scholar
  6. 6.
    Y. Gélinas, R. Lainer, and J.-P. Schmit, Optimally interfacing an ICP-MS with a conventional autosampler for the analysis of solutions with a high dissolved solids content using continuous nebulization,At. Spectrosc. 17, 207–211 (1996).Google Scholar
  7. 7.
    J.-P. Schmit, M. Youla, J. Ferraris, and Y. Gélinas, Multi-element analysis of biological tissues by inductively coupled plasma-mass spectrometry,Anal. Chim. Acta 249, 495–501 (1991).CrossRefGoogle Scholar
  8. 8.
    D. S. Jorgenson, J. A. Centeno, M. H. Mayer, F. G. Mullick, and P. N. Manson, Analytical evaluation of tissues surrounding titanium implants, inMetal Ions in Biology and Medicine, vol. 4, P. Collery, J. Corbella, J. L. Domingo, J. C. Etienne, and J. M. Llobet, eds., John Libbey Eurotext, Paris, pp. 583–585 (1996).Google Scholar
  9. 9.
    R. K. Creasy and R. Resnik, eds.,Maternal-Fetal Medicine: Principles and Practice, 3rd ed., Saunders, Philadelphia, p. 1236 (1994).Google Scholar
  10. 10.
    J. G. Dorea, M. Brito, and M. O. Araujo, Concentration of copper and zinc in liver of fetuses and infants,J. Am. Coll. Nutr. 4, 491–495 (1987).Google Scholar
  11. 11.
    P. Kamoun, M. Gonzales and N. Mulliez, Copper in human fetal tissues,Eur. J. Pediatr. 148, 581–587 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    N. O. Nartey, D. Banerjee, and M. G. Cherian, Immunohistological localization of metallothionein in cell nucleus and cytoplasm of fetal human liver and kidney and its changes during development,Pathology 19, 233–238 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    K. M. Hambidge, C. E. Casey, and N. F. Krebs,Zinc, Trace Elements in Human and Animal Nutrition, vol. 2, W. Mertz, ed., Academic, New York, pp. 1–137 (1987).Google Scholar
  14. 14.
    M. J. Dauncey, J. L. C. Shaw, and J. Urman, The absorption and retention of manganese, zinc and copper by low birth weight infants fed pasteurized human breast milk,Pediatr. Res. 11, 1033–1039 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    U. S. Singh, D. K. Saxrna, C. Singh, R. C. Murthy, and S.V. Chandra, Lead-induced fetal nephrotoxicity in iron-deficient rats,Reprod. Toxicol. 5, 211–217 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    M. S. Fahil, Z. Fahil, and D. G. Hall, Effects of subtoxic lead levels in pregnant women in the State of Missouri,Res. Commun. Chem. Pathol. Pharmacol. 13(2), 309–331 (1976).Google Scholar
  17. 17.
    C. N. Ong and W. R. Lee, High affinity of lead for fetal haemoglobin,Br. J. Ind. Med. 37, 292–298 (1980).PubMedGoogle Scholar
  18. 18.
    C. S. Lau and R. J. Kavlock, Functional toxicity in the developing heart, lung, and kidney, inDevelopmental Toxicity, C. A. Kimmel and J. Buelke-Sam, eds., Raven, New York, pp. 119–188 (1984).Google Scholar
  19. 19.
    R. K. Miller and Z. A. Shaikh, Prenatal metabolism: metals and metallothionein, inReproductive and Developmental Toxicity of Metals, T. W. Clarkson, G. F. Nordberg, and P. R. Sager, eds., Plenum, New York, pp. 153–204 (1983).Google Scholar
  20. 20.
    N. C. Wathen, H. T. Delves, D. J. Campbell, and T. Chard, The celomic cavity—a reservoir for metals,Am. J. Obstet. Gynecol. 173(6), 1884–1888 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    B. Gulbis, E. Jauniaux, J. Decuyper, P. Thiry, D. Jurkovic, and S. Campbell, Distribution of iron and iron-binding proteins in first-trimester human pregnancies,Obstet. Gynecol. 84, 289–293 (1994).PubMedGoogle Scholar
  22. 22.
    J. P. Van Wouwe, S. Hoogenkamp, and C. J. Van den Hamer, Zinc and copper of fetal organs during the second trimester of pregnancy.Biol. Trace Element Res. 29, 175–180 (1991).Google Scholar
  23. 23.
    S. R. Clough, R. S. Mitra, and A. P. Kulkarni, Qualitative and quantitative aspects of human fetal liver metallothioneins,Biol. Neonate 49, 241–254 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    C. M. Donangelo, N. M. Trugo, J. G. Dorea, and M. O. Araujo, Liver reserves of iron, copper, and vitamin bl2 in brezilian fetuses and infants of different socioeconomic status,Nutrition 9, 430–432 (1993).PubMedGoogle Scholar
  25. 25.
    N. K. Mottet and V. H. Ferm, The congenital teratogenicity and perinatal toxicity of metals, inReproductive and Developmental Toxicity of Metals, T. W. Clarkson, G. F. Nordberg, and P. R. Sager, eds., Plenum, New York, pp. 95–125 (1993).Google Scholar
  26. 26.
    B. Zheng, Changes in 6 trace elements during development of normal fetus vertebrae.Chin. Med. J. 73, 358–359 (1993).Google Scholar
  27. 27.
    L. S. Hurley, The role of zinc in prenatal and neonatal development, inTrace Metals in Health and Disease, N. Kharasch, ed., Raven, New York, pp. 167–175 (1979).Google Scholar
  28. 28.
    A. Favier and M. Favier, Role of zinc defiency in the etiology of neural tube malformations,Rev. Fr. Gynecol. Obstet. 85, 49–55 (1990).PubMedGoogle Scholar
  29. 29.
    S. M. Husain and M. Z. Mughal, Mineral transport across the placenta,Arch. Dis. Child. 67, 874–878 (1992).PubMedCrossRefGoogle Scholar
  30. 30.
    L. Guisti, Y. L. Yang, C. N. Hewitt, J. Hamilton-Taylor, and W. Davison, The solubility and partitioning of atmospherically-derived trace metals in artificial and natural waters: A review,Atm. Environ. 27A, 1567–1578 (1993).Google Scholar
  31. 31.
    W. R. Wolf, Quality assurance for trace element analysis, inTrace Elements in Human and Animal Nutrition, vol. 1, W. Mertz, ed., Academic, New York, pp. 57–78 (1987).Google Scholar
  32. 32.
    E. Bonilla, E. Salazar, J. Villasmil, and R. Villalobos, Regional distribution of manganese in normal human brain,Neurochem. Res. 7, 221–228 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    T. Saito, T. Itoh, M. Fujimura and K. Saito, Age-dependent and region-specific differences in the distribution of trace elements in 7 brain regions of Long-Evans Cinnamon (LEC) rats with hereditary copper metabolism,Brain Res. 695, 240–244 (1995).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Hock, U. Demmel, H. Schicha, K. Kasperek, and L. E. Feinendegen, Distribution of rubidium in the human brain,Brain 98, 49–64 (1975).PubMedCrossRefGoogle Scholar
  35. 35.
    J. D. Stedman and N. M. Spyrou, Major and trace-element concentration differences between the right and the left hemispheres of the normal human brain,Nutrition 11, 542–545 (1995).PubMedGoogle Scholar
  36. 36.
    J. A. Centeno, J. P. Pestaner, S. Nieves, M. Ramos, F. G. Mullick, and S. G. Kaler, The assessment of trace element and toxic metal levels in human placental tissues, inMetal Ions in Biology and Medicine, vol. 4, P. Collery, J. Corbella, J. L. Domingo, J. C. Etienne, and J. M. Llobet, eds., John Libbey Eurotext, Paris, pp. 522–525 (1996).Google Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Yves Gélinas
    • 1
  • Julie Lafond
    • 2
  • Jean-Pierre Schmit
    • 1
  1. 1.Département de ChimieUniversité du Québec à MontréalMontréalCanada
  2. 2.Département de Sciences BiologiquesUniversité du Québec à MontréalMontréalCanada

Personalised recommendations