Advertisement

Israel Journal of Mathematics

, Volume 90, Issue 1–3, pp 423–428 | Cite as

Orthogonal sums of semigroups

  • Stojan Bogdanović
  • Miroslav Ćirić
Article

Abstract

The purpose of this paper is to prove that every semigroup with the zero is an orthogonal sum of orthogonal indecomposable semigroups. We prove that the set of all 0-consistent ideals of an arbitrary semigroup with the zero forms a complete atomic Boolean algebra whose atoms are summands in the greatest orthogonal decomposition of this semigroup.

Keywords

Boolean Algebra Inverse Semigroup Regular Semigroup Complete Boolean Algebra Arbitrary Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Bogdanović and M. Ćirić,Primitive π-regular semigroups, Japan Academy. Proceedings, Vol. 68, Series A10 (1992), 334–337.Google Scholar
  2. [2]
    M. Ćirić and S. Bogdanović,Semilattice decompositions of semigroups, to appear.Google Scholar
  3. [3]
    A. H. Clifford and G. B. Preston,The Algebraic Theory of Semigroups, I, American Mathematical Society, 1961.Google Scholar
  4. [4]
    A. H. Clifford and G. B. Preston,The Algebraic Theory of Semigroups, II, American Mathematical Society, 1967.Google Scholar
  5. [5]
    T. Hall,On the natural order of ℑ-class and of idempotents in a regular semigroup, Glasgow Mathematical Journal11 (1970), 167–168.MATHMathSciNetGoogle Scholar
  6. [6]
    G. Lallement and M. Petrich,Décomposition I-matricielles d’une demi-groupe, Journal de Mathématiques Pures et Appliquées45 (1966), 67–117.MATHMathSciNetGoogle Scholar
  7. [7]
    E. S. Lyapin,Normal complexes of associative systems, Izvestiya Akademii Nauk SSSR14 (1950), 179–192 (in Russian).MATHMathSciNetGoogle Scholar
  8. [8]
    E. S. Lyapin,Semisimple commutative associative systems, Izvestiya Akademii Nauk SSSR14 (1950), 367–380 (in Russian).MATHMathSciNetGoogle Scholar
  9. [9]
    G. B. Preston,Matrix representations of inverse semigroups, Journal of the Australian Mathematical Society9 (1969), 29–61.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    G. Szász,Théorie des treillis, Co-édition Akadémiai Kiadó, Budapest et Dunod, Paris, 1971.MATHGoogle Scholar
  11. [11]
    O. Steinfeld,On semigroups which are unions of completely 0-simple semigroups, Czechoslovak Mathematical Journal16 (1966), 63–69.MathSciNetGoogle Scholar
  12. [12]
    P. S. Venkatesan,On a class of inverse semigroups, American Journal of Mathematics84 (1962), 578–582.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    P. S. Venkatesan,On decomposition of semigroups with zero, Mathematische Zeitschrift92 (1966), 164–174.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Š. Schwarz,On semigroups having a kernel, Czechoslovak Mathematical Journal1 (76) (1951), 259–301 (in Russian).Google Scholar

Copyright information

© Hebrew University 1995

Authors and Affiliations

  • Stojan Bogdanović
    • 1
  • Miroslav Ćirić
    • 1
  1. 1.Faculty of EconomicsUniversity of NišNišYugoslavia

Personalised recommendations