Skip to main content
Log in

Increased plasma pyridoxal-5′-phosphate when alkaline phosphatase activity is reduced in moderately zinc-deficient rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

It is generally believed that the zinc metalloenzyme alkaline phosphatase is required to hydrolyze phosphorylated forms of vitamin B-6 prior to their use. To test this hypothesis, rats were fed a liquid diet containing either adequate or moderately low zinc during gestation and lactation. Zinc deficiency was produced in dams evidenced by significant reductions in zinc concentration of plasma (49%), liver (25%), and femur (24%), and plasma alkaline phosphatase activity (48%). Plasma pyridoxal-5′-phosphate (PLP), which significantly increased (61%) in these same rats, was negatively correlated (r=−0.74,P<0.02) with plasma alkaline phosphatase activity. Maternal liver PLP concentration was unaffected by zinc status. The zinc and vitamin B-6 relationship seen in dams was less observable in offspring. Stimulation of erythrocyte alanine aminotransferase activity by exogenously added PLP in vitro tended to be higher in both moderately zinc-deficient mothers and their offspring, but the difference was not significant. Our results support the hypothesis that alkaline phosphatase activity is required for the hydrolysis of plasma PLP. Our results also suggest that zinc status as alkaline phosphatase activity should be defined in an individual if plasma PLP is to be used as an indicator of vitamin B-6 status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Merrill, Jr. and F. S. Burnham, inPresent Knowledge in Nutrition, 6th ed., M. L. Brown, ed., Nutrition Foundation, Washington, DC, 1990, pp. 155–162.

    Google Scholar 

  2. J. E. Leklem, inModern Nutrition in Health and Disease, 8th ed., M. E. Shils, J. Olson, and M. Shike, eds., Lea and Febiger, Philadelphia, 1993, pp. 383–394.

    Google Scholar 

  3. A. S. Prasad,J. Am. College Nutr. 4, 591–598 (1985).

    CAS  Google Scholar 

  4. K. M. Hambidge, C. C. Casey, and N. F. Krebs, inTrace Elements in Human and Animal Nutrition, 5th ed., W. Mertz, ed., Academic Press, New York, 1986, pp. 1–137.

    Google Scholar 

  5. M. P. Whyte, J. D. Mahuren, L. A. Vrabel, and S. P. Coburn,J. Clin. Invest. 76, 752–756 (1985).

    Article  PubMed  CAS  Google Scholar 

  6. A. M. Huber, and S. N. Gershoff,J. Nutr. 103, 1175–1181 (1973).

    PubMed  CAS  Google Scholar 

  7. H. Swenerton and L. S. Hurley,J. Nutr. 95, 8–18 (1968).

    PubMed  CAS  Google Scholar 

  8. R. W. Luecke, M. E. Olman, and B. V. Baltzer,J. Nutr. 94, 344–350 (1968).

    PubMed  CAS  Google Scholar 

  9. Subcommittee on Laboratory Animal Nutrition, inNutrient Requirements of Laboratory Animals, 3rd ed., National Academy of Sciences, Washington, DC, 1978, pp. 7–37.

  10. G. A. Herzfeld, L. A. Reynolds, and S. J. Richey,Nutr. Reports Internatl. 31, 849–856 (1985).

    CAS  Google Scholar 

  11. E. S. Halas, J. C. Wallwork, and H. H. Sandstead,J. Nutr. 112, 542–551 (1982).

    PubMed  CAS  Google Scholar 

  12. F. L. Cerklewski,J. Nutr. 109, 1703–1709 (1979).

    PubMed  CAS  Google Scholar 

  13. L.-C. C. Yeh and F. L. Cerklewski,J. Nutr. 114, 634–637 (1984).

    PubMed  CAS  Google Scholar 

  14. American Veterinary Medical Association Panel on Euthanasia,J. Am. Vet. Med. Assoc. 188, 252–268 (1986).

    Google Scholar 

  15. J. C. Smith, Jr., G. P. Butrimovitz, W. C. Purdy, R. L. Boeckx, R. Chu, M. E. McIntosh, K.-D. Lee, J. K. Lynn, E. C. Dinovo, A. S. Prasad, and H. Spencer,Clin. Chem. 25, 1487–1491 (1979).

    PubMed  CAS  Google Scholar 

  16. A. V. Roy,Clin. Chem. 16, 431–436 (1970).

    PubMed  CAS  Google Scholar 

  17. B. Chabner and D. Livingston,Anal. Biochem. 34, 413–425 (1970).

    Article  PubMed  CAS  Google Scholar 

  18. M. J. Woodring and C. A. Storvick,Am. J. Clin. Nutr. 23, 1385–1395 (1970).

    PubMed  CAS  Google Scholar 

  19. R. G. D. Steel and J. H. Torrie,Principles and Procedures of Statistics, 2nd ed., McGraw-Hill, New York (1980).

    Google Scholar 

  20. H. H. Sandstead,Am. J. Diseases Child. 145, 853–859 (1991).

    CAS  Google Scholar 

  21. H. Van den Berg and J. J. P. Bogaards,J. Nutr. 117, 1866–1874 (1987).

    PubMed  Google Scholar 

  22. R. Delport, J. B. Ubbink, W. J. H. Vermaak, A. Shaw, S. Bissbort, and P. J. Becker,Nutrition 7, 260–264 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, D.Y.Y., Cerklewski, F.L. & Leklem, J.E. Increased plasma pyridoxal-5′-phosphate when alkaline phosphatase activity is reduced in moderately zinc-deficient rats. Biol Trace Elem Res 39, 203–210 (1993). https://doi.org/10.1007/BF02783190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783190

Index Entries

Navigation