Skip to main content
Log in

Kinetic studies of the urease-catalyzed hydrolysis of urea in a buffer-free system

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The kinetics of urea hydrolysis catalyzed by urease, mainly in the absence of buffers by use of the self-buffer effect of the products, was investigated. The effect of pH, temperature, and concentration of enzyme, substrate, product, salt ions, and buffers on the kinetic behavior of urease was examined. A kinetic model of a modified Michaelis-Menten form, incorporating substrate and product inhibition, pH dependence, and temperature effect, was developed to describe the reaction rate. Experimental data indicated that urease in a buffer-free solution was less susceptible to the inhibition of substrate product. The Michaelis constant keeps almost constant with the variation of pH and temperature, and increases with the addition of buffers and salts. The data also suggested that the noncompetitive pattern of the product inhibition, which is not significantly affected by temperature, increases gently with increasing pH. A Monod form rate expression was proposed to analyze the pH effect on the maximum rate. The proposed kinetic model was also examined by the long-time experiments in which pH, substrate, and product concentration varied obviously during the reaction course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CNH3 :

initial ammonia concentration in the reaction solution, M

Curea :

urea concentration in the reaction solution, M

Curease :

urease concentation in the reaction solution, mg/L

Ea :

activation energy, kJ/mol

[H+]:

hydrogen ion concentration, M

k 0 :

frequency factor, mol NH3/s/g urease

Kes,1, Kes,2 :

empirical parameters in Eq. (4) and Eq. (10),M

K M :

Michaelis constant,M

K p :

product inhibition constant,M

K s :

substrate inhibition constant,M

P :

product concentration,M

S :

substrate concentration,M

T :

temperature, K or °C

t :

time, s

V :

reaction rate, mol NH3/s/g urease

V m :

maximum reaction rate, mol NH3/s/g urease

\(V_{m_0 } \) :

maximum reaction rate without pH inhibition, mol NH3/s/g urease

V m,p :

maximum reaction rate at product concentration P, mol NH3/s/g urease

V m(pH):

maximum reaction rate at pH, mol NH3/s/g urease

α :

empirical exponent in Eq. (4) and Eq. (10)

β :

empirical exponent in Eq. (4) and Eq. (10)

References

  1. Sumner, J. B., Hand, D. B., and Holloway, R. G. (1931), J. Biol. Chem. 91, 331–341.

    Google Scholar 

  2. Guilbault, G. G. and Montalvo, J. G. (1970), J. Am. Chem. Soc. 92, 2533–2538.

    Article  CAS  Google Scholar 

  3. Mascini, M. and Guilbault, G. G. (1977), Anal. Chem. 49, 795–798.

    Article  CAS  Google Scholar 

  4. Kobos, R. K., Eveleigh, J. W., Stepler, M. L., Haley, B. J., and Papa, S. L. (1988), Anal. Chem. 60, 1996–1998.

    Article  CAS  Google Scholar 

  5. Spinks, T. L. and Pacey, G. E. (1990), Anal. Chim. Acta 237, 503–508.

    Article  CAS  Google Scholar 

  6. Wang, Y. J., Chen, C. H., Hsiue, G. H., and Yu, B. C. (1992), Biotechnol. Bioeng. 40, 446–449.

    Article  CAS  Google Scholar 

  7. Blaedel, W. J. and Kissel, T. R. (1975), Anal. Chem. 47, 1602–1608.

    Article  CAS  Google Scholar 

  8. Moynihan, H. J. and Wang, N.-H. L. (1987), Biotechnol. Progr. 3, 90–100.

    Article  CAS  Google Scholar 

  9. Chang, T. M. S. (1964), Science 146, 524, 525.

    Article  CAS  Google Scholar 

  10. Piskin, E. and Chang, T. M. S. (1979), Int. J. Artif. Organs 2, 211–214.

    CAS  Google Scholar 

  11. Ohshima, Y., Shirane, K., and Funakubo, H. (1980), Ann. Rep. Eng. Res. Inst. Fac. Eng., Univ. Tokyo 39, 81–86.

    CAS  Google Scholar 

  12. Lehmann, H. D. and Marten, R. (1981), Artif. Organs 5, 278–285.

    Article  CAS  Google Scholar 

  13. Xu, H. D., Chen, B. R., Yao, G. R., Liu, Y. X., and Li, G. M. (1987), Water Treat. 2, 136–140.

    CAS  Google Scholar 

  14. Yang, L. D. and Chen, Y. C. (1990), Tech. Water Treat. (China) 16, 223–229.

    CAS  Google Scholar 

  15. Kamath, N., Melo, J. S., and D'Souza, S. F. (1988), Appl. Biochem. Biotechnol. 19, 251–258.

    Article  CAS  Google Scholar 

  16. Kamath, N. and D'Souza, S. F. (1991), Enzyme Microb. Technol. 13, 935–938.

    Article  CAS  Google Scholar 

  17. Laidler, K. J. and Hoare, J. P. (1949), J. Am. Chem. Soc. 71, 2699–2702.

    Article  CAS  Google Scholar 

  18. Laidler, K. J. and Hoare, J. P. (1950), J. Am. Chem. Soc. 72, 2487–2489.

    Article  Google Scholar 

  19. Laidler, K. J. and Hoare, J. P. (1950), J. Am. Chem. Soc. 72, 2489–2494.

    Article  CAS  Google Scholar 

  20. Jesperson, N. D. (1975), J. Am. Chem. Soc. 97, 1662–1667.

    Article  Google Scholar 

  21. Goldstein, L., Levy, M., and Shemer, L. (1983), Biotechnol. Bioeng. 25, 1485–1499.

    Article  CAS  Google Scholar 

  22. Atkinson, B. and Rousseau, I. (1977), Biotechnol. Bioeng. 19, 1065–1086.

    Article  CAS  Google Scholar 

  23. Martins, M. B. F., Cruz, M. E. M., Cabral, J. M. S., and Kennedy, J. F. (1987), J. Chem. Tech. Biotechnol. 39, 201–213.

    Article  Google Scholar 

  24. Vasudevan, P. T., Ruggiano, L., and Weiland, R. H. (1990), Biotechnol. Bioeng. 35, 1145–1149.

    Article  CAS  Google Scholar 

  25. Wall, M. C. and Laidler, K. J. (1953), Arch. Biochem. Biophys. 43, 299–306.

    Article  CAS  Google Scholar 

  26. Fasman, G. D. and Niemann, C. (1951), J. Am. Chem. Soc. 73, 1646–1650.

    Article  CAS  Google Scholar 

  27. Kistiakowsky, G. B., Mangelsdorf, P. C., Rosenberg, A., Jr., and Shaw, W. H. R. (1952), J. Am. Chem. Soc. 74, 5015–5020.

    Article  CAS  Google Scholar 

  28. Kistiakowsky, G. B. and Rosenberg, A., Jr. (1952), J. Am. Chem. Soc. 74, 5020–5025.

    Article  CAS  Google Scholar 

  29. Huang, T. C. and Chen, D. H. (1991), J. Chem. Tech. Biotechnol. 52, 433–444.

    Article  CAS  Google Scholar 

  30. Huang, T. C. and Chen, D. H. (1992), J. Chem. Tech. Biotechnol. 55, 45–51.

    Article  CAS  Google Scholar 

  31. Moynihan, H. J., Lee, C. K., Clark, W., and Wang, N.-H. L. (1989), Biotechnol. Bioeng. 34, 951–963.

    Article  CAS  Google Scholar 

  32. Bollmeier, J. P. and Middlemen, S. (1979), Biotechnol. Bioeng. 21, 2303–2321.

    Article  CAS  Google Scholar 

  33. Harmon, K. M. and Niemann, C. (1949), J. Biol. Chem. 177, 601–605.

    CAS  Google Scholar 

  34. Kistiakowsky, G. B. and Shaw, W. H. R. (1953), J. Am. Chem. Soc. 75, 2751–2754.

    Article  CAS  Google Scholar 

  35. Toren, E. C. and Burger, F. J. (1968), Mikrochimica Acta (Wien) 5, 1049–1058.

    Article  Google Scholar 

  36. Shaw, W. H. R. and Raval, D. N. (1961), J. Am. Chem. Soc. 83, 3184–3187.

    Article  CAS  Google Scholar 

  37. Blakeley, R. L., Webb, E. C., and Zerner, B. (1969), Biochem. 8, 1984–1990.

    Article  CAS  Google Scholar 

  38. Barth, A. and Michel, H.-J. (1972), Biochem. Physiol. Pfanzen 163, 103–109.

    CAS  Google Scholar 

  39. Shaw, W. H. R. (1952), J. Am. Chem. Soc. 76, 2160–2163.

    Article  Google Scholar 

  40. Krajewska, B. (1991), J. Chem. Tech. Biotechnol. 52, 157–162.

    Article  CAS  Google Scholar 

  41. Chaney, A. L. and Marbach, E. P. (1962), Clin. Chem. 8, 130–132.

    CAS  Google Scholar 

  42. Furusaki, S., Nozawa, T., and Nomura, S. (1990), Bioproc. Eng. 5, 73–78.

    Article  CAS  Google Scholar 

  43. Schmidt-Steffen, A. and Staude, E. (1992), Biotechnol. Bioeng. 39, 725–731.

    Article  CAS  Google Scholar 

  44. Yonese, M., Murabayashi, H., and Kishimoto, H. (1990), J. Membrane Sci. 54, 145–162.

    Article  CAS  Google Scholar 

  45. Sumner, J. B. and Hand, D. B. (1928), J. Biol. Chem. 76, 149–162.

    CAS  Google Scholar 

  46. Gorin, G., Fuchs, E., Bulter, L. G., Chopra, S. L., and Hersh, R. T. (1962), Biochem. 1, 911–916.

    Article  CAS  Google Scholar 

  47. Gorin, G. and Chin, C.-C. (1966), Anal. Biochem. 17, 49–59.

    Article  CAS  Google Scholar 

  48. Gorin, G. and Chin, C.-C. (1966), Anal. Biochem. 17, 60–65.

    Article  Google Scholar 

  49. Van Slyke, D. D. and Archibald, R. M. (1944), J. Biol. Chem. 154, 623–642.

    Google Scholar 

  50. Monshipouri, M. and Neufeld, R. J. (1991), Enzyme Microb. Technol. 13, 309–313.

    Article  CAS  Google Scholar 

  51. Wait, G. W. and Chrisp, J. D. (1954), Anal. Chem. 26, 452,453.

    Article  Google Scholar 

  52. Bulter, L. G. and Reithel, F. J. (1977), Arch. Biochem. Biophys. 178, 43–50.

    Article  Google Scholar 

  53. Hanss, M. and Rey, A. (1971), Biochem. Biophys. Acta 227, 630–638.

    CAS  Google Scholar 

  54. Grunwald, P., Hansen, K., and Stollhans, M. (1988), Meded. Fac. Landbouww. Rijksuniv. Gent 53(4b), 2057–2064.

    CAS  Google Scholar 

  55. Ramachandran, K. B. and Permutter, D. D. (1976), Biotechnol. Bioeng. 18, 685–699.

    Article  CAS  Google Scholar 

  56. Lenchi, R. W. and Neufeld, R. J. (1986), World Congress 3rd of Chemical Engineering, Tokyo, 10a-367, 949–952.

    Google Scholar 

  57. Han, K. and Levenspiel, O. (1988), Biotechnol. Bioeng. 32, 430–437.

    Article  CAS  Google Scholar 

  58. Mulchandani, A. and Luong, J. H. T. (1989), Enzyme Microb. Technol. 11, 66–73.

    Article  CAS  Google Scholar 

  59. Demirel, G., Akovali, G., Tanyolac, A., and Hasirci, N. (1992), J. Chem. Tech. Biotechnol. 55, 319–323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Cabral, J.M.S. Kinetic studies of the urease-catalyzed hydrolysis of urea in a buffer-free system. Appl Biochem Biotechnol 49, 217–240 (1994). https://doi.org/10.1007/BF02783059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783059

Index Entries

Navigation