Israel Journal of Mathematics

, 108:37 | Cite as

Multiple recurrence and infinite measure preserving odometers



A family of infinite measure preserving odometers is presented which exhibit examples ofp-recurrent but notp+1-recurrent ergodic transformations for everyp>1.


Measure Preserve Transformation Ergodic Transformation Infinite Measure Finite Measure Space Infinite Invariant Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    J. Aaronson and M. Nadkarni,L eigenvalues and L 2 spectra of non-singular transformations, Proceedings of the London Mathematical Society55 (1987), 538–570.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    J. Choksi, J. Hawkins and V. Prasad,Abelian cocyles for nonsingular ergodic transformations and genericity of type III 1 transformations, Monatschefte für Mathematik103 (1987), 187–205.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    N. G. De Bruijn,On bases for sets of integers, Publicationes Mathematicae Debrecen1 (1950), 232–242.MATHMathSciNetGoogle Scholar
  4. [4]
    S. Eigen and A. Hajian,Poincaré Sequences in Infinite Measure Spaces and Complementing Subsets of the Integers, Lecture Notes in Mathematics1342, Springer-Verlag, Berlin, 1988, pp. 154–157.Google Scholar
  5. [5]
    S. Eigen and A. Hajian,Sequences of integers and ergodic transformations, Annals of Mathematics73 (1989), 256–262.MATHMathSciNetGoogle Scholar
  6. [6]
    N. Friedman,Introduction to Ergodic Theory, Van Nostrand Reinhold, New York, 1970.MATHGoogle Scholar
  7. [7]
    H. Furstenberg,Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.MATHGoogle Scholar
  8. [8]
    A. Hajian and S. Kakutani,An example of an ergodic m.p.t. defined on an infinite measure space, Lecture Notes in Mathematics160, Springer-Verlag, Berlin, 1970, pp. 45–52.Google Scholar
  9. [9]
    T. Hamachi and M. Osikawa,Ergodic groups of automorphisms and Krieger’s theoerems, Seminar on Mathematical Sciences, Keio University, 1981.Google Scholar
  10. [10]
    D. Hill,σ-finite invariant measures on infinite product spaces, Transactions of the American Mathematical Society153 (1971), 347–370.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    B. Host, J. F. Mela and F. Parreau,Nonsingular transformations and spectral analysis of measures, Bulletin de la Société Mathématique de France119 (1991), 33–90.MATHMathSciNetGoogle Scholar
  12. [12]
    Y. Ito, T. Kamae and J. Shiokawa,Point spectrum and Hausdorff dimension, inNuclear Theory and Combinatorics (J. Akiyama et al., eds.), World Scientific, Singapore, 1985.Google Scholar
  13. [13]
    D. Rudolph and C. Silva,Minimal self-joinings for nonsingular transformations, Ergodic Theory and Dynamical Systems9 (1989), 759–800.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    K. Schmidt,Some solved and unsolved problems concerning orbit equivalence of countable group actions, inProceedings of the Conference on Ergodic Theory and Related Topics II (Georgenthal, 1986), Teubner-Texte Math 94, Teubner, Leipzig, 1987, pp. 171–184.Google Scholar
  15. [15]
    E. Szemerédi,On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica27 (1975), 199–245.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1998

Authors and Affiliations

  1. 1.Department of MathematicsNortheastern UniversityBostonUSA
  2. 2.Department of MathematicsNortheastern UniversityBostonUSA
  3. 3.Department of Computing and Information Technology Leonard N. Stern School of BusinessNew York UniversityNew YorkUSA

Personalised recommendations