Advertisement

Il Nuovo Cimento (1943-1954)

, Volume 8, Issue 11, pp 817–842 | Cite as

On the general theory of damping in quantum mechanics

  • M. Schönberg
Article

Summary

A general form of the equation ofHeitler andPeng, valid for time dependent interactions, is given. The relations between the generalized Heitler-Peng and Schwinger theories of damping are examined in detail. A form of the damping theory given previously by the author is generalized to the case of any time independent interaction. It is shown that the generalized form of the Heitler-Peng treatment of the damping may be used to develop a form of stationary perturbation theory applicable to cases in which it is not possible to set up a correspondence between unperturbed and perturbed stationary states.

Riassunto

Si dà un'espressione generale per l'equazione di Heitler e Peng. Si esaminano dettagliatamente le relazioni tra le teorie generalizzate di Heitler e Peng e di Schwinger sullo smorzamento. Si generalizza una forma della teoria dello smorzamento data dall'autore in un precedente lavoro per il caso di un'interazione qualsiasi indipendente dal tempo. Si mostra che la forma generalizzata della trattazione dello smorzamento di Heitler e Peng può essere usata per sviluppare una forma di teoria delle perturbazioni stazionarie applicabile a casi in cui non sia possibile stabilire una corrispondenza tra stati stazionari perturbati e imperturbati.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    V. Weisskopf andE. Wigner:Zeits. f. Phys.,63, 54 (1930);65, 18 (1930).ADSCrossRefGoogle Scholar
  2. (2).
    A. H. Wilson:Proc. Cam. Phil. Soc.,37, 301 (1941);W. Heitler:Proc. Cam. Phil. Soc.,37, 291 (1941);A. Sokolov:Journ. Phys. U.R.S.S.,5, 231 (1941);E. Gora:Zeits. f. Phys.,120, 121 (1943).ADSCrossRefGoogle Scholar
  3. (3).
    W. Heitler andH. W. Peng:Proc. Cam. Phil. Soc.,38, 296 (1942).ADSCrossRefGoogle Scholar
  4. (4).
    W. Pauli:Meson Theory of Nuclear Forces, (New York, 1946), p. 41.Google Scholar
  5. (5).
    W. Heitler andS. T. Ma:Proc. Roy. Irish Acad.,52A, 109 (1949).MathSciNetGoogle Scholar
  6. (6).
    J. Hamilton:Proc. Phys. Soc.,62, 12 (1949).ADSCrossRefGoogle Scholar
  7. (7).
    N. Fukuda andT. Miyazima:Prog. Theor. Phys.,5, 849 (1950).MathSciNetADSCrossRefGoogle Scholar
  8. (8).
    J. Schwinger:Phys. Rev.,74, 1439 (1948).MathSciNetADSCrossRefGoogle Scholar
  9. (9).
    M. Schönberg:Nuovo Cimento,8, 403 (1951).MathSciNetGoogle Scholar
  10. (10).
    M. Schönberg,Nuovo Cimento,8, 651 (1951).MathSciNetCrossRefGoogle Scholar
  11. (11).
    M. H. Stone:Linear Transformations in Hilbert Space (New York, 1932).Google Scholar
  12. (12).
    M. Schönberg:Nuovo Cimento,8, 241 (1951).Google Scholar
  13. (13).
    A. Sommerfeld:Ann. d. Phys.,11, 257 (1931).ADSCrossRefGoogle Scholar
  14. (14).
    J. Meixner:Math. Zeits.;36, 677 (1933);Zeits. f. Phys.,90, 312 (1934);Ann. d. Phys.,29, 97 (1937).MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1951

Authors and Affiliations

  • M. Schönberg
    • 1
  1. 1.Centre de Physique Nucléaire de l'Université LibreBruxelles

Personalised recommendations