Israel Journal of Mathematics

, Volume 76, Issue 1–2, pp 153–160 | Cite as

On Brieskorn’s theorem

  • V. Hinich


A cohomological proof of Brieskorn’s theorem describing the singularity of the nilpotent cone of a complex simple Lie algebra in a subregular point, is given.


Irreducible Component Simple Root Exceptional Divisor Cartan Matrix Nilpotent Orbit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B1]
    E. Brieskorn,Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann.166 (1966), 76–102.MATHCrossRefMathSciNetGoogle Scholar
  2. [B2]
    E. Brieskorn,Singular elements of semi-simple algebraic groups, Actes Congrès Intern. Math., Nice2 (1970), 279–284.MathSciNetGoogle Scholar
  3. [EGA]
    A. Grothendieck and J. Dieudonne, EGA.Google Scholar
  4. [K]
    B. Kostant,Lie group representations on polynomial rings, Am. J. Math.85 (1963), 327–404.MATHCrossRefMathSciNetGoogle Scholar
  5. [R]
    R. Richardson,Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc.6 (1974), 21–24.MATHCrossRefMathSciNetGoogle Scholar
  6. [Sl]
    P. Slodowy,Simple singularities and simple algebraic groups, Springer Lecture Notes in Math.815 (1980).Google Scholar
  7. [Spa]
    N. Spaltenstein,On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology16 (1976), 203–204.CrossRefMathSciNetGoogle Scholar
  8. [Sp]
    T. Springer,The unipotent variety of a semisimple group, Proc. Colloq. Alg. Geom. Tata Institute (1969), 373–391.Google Scholar
  9. [St]
    R. Steinberg,Conjugacy classes in algebraic groups, Springer Lecture Notes in Math.366(1974).Google Scholar

Copyright information

© Hebrew University 1991

Authors and Affiliations

  • V. Hinich
    • 1
  1. 1.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations