Advertisement

Israel Journal of Mathematics

, Volume 76, Issue 1–2, pp 153–160 | Cite as

On Brieskorn’s theorem

  • V. Hinich
Article

Abstract

A cohomological proof of Brieskorn’s theorem describing the singularity of the nilpotent cone of a complex simple Lie algebra in a subregular point, is given.

Keywords

Irreducible Component Simple Root Exceptional Divisor Cartan Matrix Nilpotent Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B1]
    E. Brieskorn,Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann.166 (1966), 76–102.MATHCrossRefMathSciNetGoogle Scholar
  2. [B2]
    E. Brieskorn,Singular elements of semi-simple algebraic groups, Actes Congrès Intern. Math., Nice2 (1970), 279–284.MathSciNetGoogle Scholar
  3. [EGA]
    A. Grothendieck and J. Dieudonne, EGA.Google Scholar
  4. [K]
    B. Kostant,Lie group representations on polynomial rings, Am. J. Math.85 (1963), 327–404.MATHCrossRefMathSciNetGoogle Scholar
  5. [R]
    R. Richardson,Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc.6 (1974), 21–24.MATHCrossRefMathSciNetGoogle Scholar
  6. [Sl]
    P. Slodowy,Simple singularities and simple algebraic groups, Springer Lecture Notes in Math.815 (1980).Google Scholar
  7. [Spa]
    N. Spaltenstein,On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology16 (1976), 203–204.CrossRefMathSciNetGoogle Scholar
  8. [Sp]
    T. Springer,The unipotent variety of a semisimple group, Proc. Colloq. Alg. Geom. Tata Institute (1969), 373–391.Google Scholar
  9. [St]
    R. Steinberg,Conjugacy classes in algebraic groups, Springer Lecture Notes in Math.366(1974).Google Scholar

Copyright information

© Hebrew University 1991

Authors and Affiliations

  • V. Hinich
    • 1
  1. 1.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations