Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 103, Issue 7, pp 1073–1083 | Cite as

Anisotropic chromodynamics and the QCD ground state

  • G. Preparata
Article

Summary

Anisotropic chromodynamics (ACD), a color gauge theory on a postulated anisotropic space-time proposed long ago, is seen to emerge as the effective theory of quarks and gluons on what most likely is the QCD ground state, the chromo magnetic liquid (CML). A description of both the kinematics and dynamics of ACD is presented, and a possible strategy for a systematic calculation of hadronic physics is outlined.

PACS 11.15.Tk

Other nonperturbative techniques 

PACS 12.38.Lg

Other nonperturbative calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Preparata:Phys. Lett. B,102, 327 (1981).CrossRefADSGoogle Scholar
  2. [2]
    Contrary to a widely held opinion, this research program has never questioned the validity of the basic QCD Lagrangian. It only departed from the generally accepted picture of QCD, which pretends that confinement does not play any role at short distances.Google Scholar
  3. [3]
    D. Gross andF. Wilczek:Phys. Rev. Lett.,30, 1342 (1973);H. D. Politzer:Phys. Rev. Lett.,30, 1346 (1973).CrossRefADSGoogle Scholar
  4. [4]
    For a recent review seeG. Preparata:The magnetic instability of the perturbative Yang-Mills vacuum, inVariational Calculations in Quantum Field Theory, edited byL. Polley andD. E. L. Pottinger (World Scientific, Singapore, 1988).Google Scholar
  5. [5]
    An early—and only—criticism byL. Maiani et al.:Nucl. Phys. B,273, 275 (1986), was rebutted inG. Preparata:Nuovo Cimento A,96, 394 (1986) and more recently with different arguments has been dismissed byP. Castorina andM. Consoli:Phys. Lett. B,213, 493 (1988).CrossRefADSGoogle Scholar
  6. [6]
    J. Ashman et al.:Phys. Lett. B,206, 364 (1988).CrossRefADSGoogle Scholar
  7. [7]
    G. Preparata:Nucl. Phys. B.,279, 235 (1987).CrossRefADSGoogle Scholar
  8. [8]
    G. K. Savvidy:Phys. Lett. B,71, 133 (1977).CrossRefADSGoogle Scholar
  9. [9]
    G. Preparata:Nuovo Cimento A,96, 366 (1986).CrossRefADSGoogle Scholar
  10. [10]
    L. Cosmai andG. Preparata:Phys. Rev. Lett.,57, 2613 (1986).MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    G. Preparata:Phys. Lett. B,201, 139 (1988).CrossRefADSGoogle Scholar
  12. [12]
    H. B. Nielsen andP. Olesen:Nucl. Phys. B,160, 380 (1979).MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    It should be stressed that in its original formulation ACD didnot include dynamical (transverse) gluons. The existence of these unexpected dynamical degrees of freedom is a new important consequence of the magnetic condensation phenomenon that leads to the CML.Google Scholar
  14. [14]
    J. L. Basdevant andG. Preparata:Nuovo Cimento A,67, 19 (1982);J. L. Basdevant, P. Colangelo andG. Preparata:Nuovo Cimento A,71, 445 (1982).CrossRefADSGoogle Scholar
  15. [15]
    G. Preparata: in preparation.Google Scholar
  16. [16]
    S. Mattina andG. Preparata: in preparation.Google Scholar
  17. [17]
    The solution of this problem requires the correct definition of the single hadron matrix elements of electroweak currents.Google Scholar
  18. [18]
    See, for instance,G. Preparata: inProceedings of the 1984 SLAC Summer Institute (Stanford, 1985).Google Scholar

Copyright information

© Società Italiana di Fisica 1990

Authors and Affiliations

  • G. Preparata
    • 1
    • 2
  1. 1.Dipartimento di Fisica dell'UniversitàMilano
  2. 2.INFNSezione di MilanoMilanoItalia

Personalised recommendations