Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 103, Issue 7, pp 983–1052 | Cite as

An elementary particle constituent-quark model

  • M. H. Mac Gregor
Article

Summary

A comparison of mesonmasses with baryonexcitation energies reveals a common mass-band structure, in which particles with a variety of quantum numbers are grouped together. These quantized mass values seemingly mandate a constituent-quark (CQ) viewpoint. By studying the meson and baryonyrast states, we can deduce the masses and spin values of some of the constituent quarks. A comprehensive CQ model is presented that reproduces the observed spectrum of hadrons and leptons. These CQ quarks include the standard u, d, s, c, b set of quarks as a subset. The quark generation process, which features characteristic mass triplings, is a key ingredient of this CQ model. All of the constituent-quark masses are formed from a set of three basic masses, two spinning and one spinless, which are directly related to the masses of the electron, muon, and pion. The mass quantum X=420 MeV is a dominant excitation state that dictates meson, baryon, and lepton mass values. The quantum X occurs in bothS=0 andS=1 spin configurations, and it serves as a «window» for transformations between orbital and spin angular momenta. The fully relativistic spinning sphere, with its distinctive 3/2 mass increase, provides an isoergic link between spinless and spinning excitation quanta. The fine-structure constant α and the charge-splitting quantum ε=9me provide links between quarks and leptons. Particle lifetimes and decay modes reflect constituent-quark substructures.

PACS 12.70

Hadron mass formulas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Particle Data Group:Peview of Particle Properties, Phys. Lett. B,204 (1988).Google Scholar
  2. [2]
    K. Gottfried andV. F. Weisskopf:Concepts of Particle Physics, Vol.1 (Oxford University Press, New York, N.Y., 1984), p. 100.Google Scholar
  3. [3]
    R. P. Feynman:QED (Princeton University Press, Princeton, N.Y., 1985), p. 152.Google Scholar
  4. [4]
    Y. Nambu:Prog. Theor. Phys. (Kyoto),7, 595 (1952).MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    J. D. Jackson:Classical Electrodynamics (Wiley, New York, N.Y., 1962), p. 590 footnote.Google Scholar
  6. [6]
    M. H. Mac Gregor:Lett. Nuovo Cimento,1, 759 (1971).CrossRefGoogle Scholar
  7. [7]
    J. D. Barrow andF. J. Tipler:The Anthropomorphic Cosmological Principle (Oxford University Press, New York, N.Y., 1986), p. 279, ref. [45].Google Scholar
  8. [8]
    M. H. Mac Gregor: UCRL 100287,The e, μ, π Triad: Rosetta Stone of Constituent-Quark Masses (January, 1989).Google Scholar
  9. [9]
    Crystal Ball Collaboration (D. A. Williams et al.):Phys. Rev. D,38, 1365 (1988).CrossRefGoogle Scholar
  10. [10]
    K. Gottfried andV. F. Weisskopf:Concepts of Particle Physics, Vol.1 (Oxford University Press, New York, N.Y., 1984), pp. 74–93.Google Scholar
  11. [11]
    K. Gottfried andV. F. Weisskopf:Concepts of Particle Physics, Vol.1 (Oxford University Press, New York, N.Y., 1984), p. 112.Google Scholar
  12. [12]
    J. Franklin:Phys. Rev.,172, 1807 (1968).CrossRefADSGoogle Scholar
  13. [13]
    K. Gottfried andV. F. Weisskopf:Concepts of Particle Physics, Vol.1 (Oxford University Press, New York, N.Y., 1984), p. 86.Google Scholar
  14. [14]
    K. Gottfried andV. F. Weisskopf:Concepts of Particle Physics, Vol.1 (Oxford University Press, New York, N.Y., 1984), pp. 85, 98.Google Scholar
  15. [15]
    A. J. Hey andR. L. Kelly:Phys. Rep.,96, 72 (1983), p. 193.Google Scholar
  16. [16]
    R. P. Feynman: inThe Quantum Theory of Fields, Proceedings of the Twelfth Conference on Physics at the University of Brussels, October, 1961, edited byR. Stoops (Interscience, New York, N.Y., 1961), p. 75.Google Scholar
  17. [17]
    M. H. Mac Gregor:The Nature of the Elementary Particle (Springer-Verlag, Berlin, 1978), p. 64.Google Scholar
  18. [18]
    M. H. Mac Gregor:Lett. Nuovo Cimento,4, 211 (1970).CrossRefGoogle Scholar
  19. [19]
    M. H. Mac Gregor:Phys. Rev. D,9, 1259 (1974);10, 850 (1974).MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    R. A. Carrigan jr.:Lett. Nuovo Cimento,24, 13 (1979);S. Blaha:Phys. Lett. B,84, 116 (1979).CrossRefGoogle Scholar
  21. [21]
    J. D. Barrow andF. J. Tipler:The Anthropomorphic Cosmological Principle (Oxford University Press, New York, N.Y., 1986), p. 230, carries the following comment: «Mac Gregor's correlation between powers of α and the lifetimes of metastable states is another curious trend».Google Scholar
  22. [22]
    B. T. Feld:Models of Elementary Particles (Blaisdell, Waltham, 1969), p. 362.Google Scholar
  23. [23]
    F. E. Close:An Introduction to Quarks and Partons (Academic Press, London, 1979), p. 400.Google Scholar
  24. [24]
    Particle Data Group:Review of Particle Properties, Phys. Lett. B,204, 109 (1988).Google Scholar
  25. [25]
    K. Gottfried andV. F. Weisskopf:Concepts of Particle Physics, Vol.1 (Oxford University Press, New York, N.Y., 1984), p. 82.Google Scholar
  26. [26]
    J. Pisut andM. Roos:Nucl. Phys. B,6, 325 (1968), fig. 1 and 3;H. Becker et al: Nucl. Phys. B,151, 46 (1979), fig. 1a).CrossRefADSGoogle Scholar
  27. [27]
    CERN-Cracow-Munich Collaboration (V. Chabaud et al.):Nucl. Phys. B,223, 1 (1983), fig. 1.CrossRefADSGoogle Scholar
  28. [28]
    M. H. Mac Gregor:Nuovo Cimento A,18, 169 (1973).CrossRefADSGoogle Scholar
  29. [29]
    A. Delfosse, P. A. Dorsaz, P. Extermann, O. Guisan, M. N. Kienzle-Focacci, G. Mancarella, M. Martin, P. Muhlemann, C. Nef, T. Pal, J. Rutschmann, A. Vriens, J.-L. Gloor, R. Weill andH. Zeidler:Nucl. Phys. B,183, 349 (1981).CrossRefADSGoogle Scholar
  30. [30]
    B. Hyams, C. Jones, P. Weilhammer, W. Blum, H. Dietl, G. Grayer, G. Hentschel, W. Koch, E. Lorenz, G. Lütjens, G. Lutz, W. Männer, J. Meissburger, R. Richter, U. Stierlin andE. J. Sacharidis:Nucl. Phys. B,146, 303 (1978);CERN-Munich Collaboration (V. Chabaud et al.): Nucl. Phys. B,175, 189 (1980); W. E. Cleland, A. Delfosse, P. A. Dorsaz, J.-L. Gloor, M. N. Kienzle-Focacci, G. Mancarella, A. D. Martin, M. Martin, P. Muhlemann, C. Nef, T. Pal, J. Rutschmann andH. Zeidler:Nucl. Phys. B,208, 228 (1982).CrossRefADSGoogle Scholar
  31. [31]
    Particle Data Group:Review of Particle Properties, Phys. Lett. B,204, 321, 338 (1988).Google Scholar
  32. [32]
    B. T. Feld:Models of Elementary Particles (Blaisdell, Waltham, 1969), p. 339.Google Scholar
  33. [33]
    See, for example,M. H. Mac Gregor:Phys. Rev. Lett.,42, 1724 (1979), fig. 2.CrossRefADSGoogle Scholar
  34. [34]
    S. Yamada: inProceedings of the 1983 International Symposium on Lepton and Photon Interactions at High Energies, edited byD. G. Cassel andD. L. Kreinick (Cornell University, Ithaca, 1983), p. 535.Google Scholar
  35. [35]
    Particle Data Group:Review of Particle Properties, Phys. Lett. B,204, 119 (1988).Google Scholar
  36. [36]
    The PETRA top quark searches are summarized in the following series of papers and reports: DESY 81/029;Phys. Lett. B,81, 410 (1979);83, 261 (1979);85, 463 (1979);86, 413 (1979);88, 171 (1979);88, 199 (1979);89, 136 (1979);91, 148 152 (1980);99, 277 (1981);100, 364 (1981);103, 148 (1981);108, 63 (1982);113, 499 (1982);114, 282 (1982);129, 145 (1983);138, 441 (1984);144, 297 (1984);152, 439 (1985);160, 337 (1985);183, 400 (1987);Phys. Rev. Lett.,42, 1113 (1979);43, 901 (1979);44, 1722 (1980);45, 1533 (1980);50, 799 (1983);51, 443 (1983);53, 134 (1984);Phys. Rev. D,34, 681 (1986);Phys. Rep.,63, 337 (1980);83, 151 (1982);107, 59 (1984);109, 131 (1984);Z. Phys. C,4, 87 (1980);14, 283 (1982);19, 197 (1983);25, 231 (1984);36, 15 (1987).Google Scholar
  37. [37]
    TRISTAN top quark searches are described in:Phys. Soc. Jpn.,56, 3763 (1987);Phys. Lett. B,198, 570 (1987);Phys. Rev. Lett.,60, 93, 97 (1988).Google Scholar
  38. [38]
    PEP:Z. Phys. C,28, 31 (1985);Phys. Rev. D,31, 1, 1537 (1985).CrossRefGoogle Scholar
  39. [39]
    CERN (UA1):Z. Phys. C,37, 505 (1988).CrossRefADSGoogle Scholar
  40. [40]
    K. Gottfried andV. F. Weisskopf:Concepts of Particle Physics, Vol.1 (Oxford University Press, New York, N.Y., 1984), p. 76.Google Scholar
  41. [41]
    Particle Data Group:Review of Particle Properties, Phys. Lett. B,204, 230 (1988).Google Scholar
  42. [42]
    K. Gottfried andV. F. Weisskopf:Concepts of Particle Physics, Vol.1 (Oxford University Press, New York, N.Y., 1984), p. 86.Google Scholar
  43. [43]
    M. H. Mac Gregor:Nuovo Cimento A,58, 159 (1980).CrossRefADSGoogle Scholar
  44. [44]
    J. F. Crawford, M. Daum, R. Frosch, B. Jost, P.-R. Kettle, R. M. Marshall, B. K. Wright andK. O. H. Ziock:Phys. Lett. B,213, 391 (1988).CrossRefADSGoogle Scholar
  45. [45]
    J. Schwinger:Phys. Rev.,73, 416 (1948).MathSciNetCrossRefADSGoogle Scholar
  46. [46]
    F. Rasetti andE. Fermi:Nuovo Cimento,3, 226 (1926).CrossRefGoogle Scholar
  47. [47]
    M. Born andE. Schrödinger:Nature (London),135, 342 (1935).CrossRefADSGoogle Scholar
  48. [48]
    R. P. Feynman: inThe Quantum Theory of Fields, Proceedings of the Twelfth Conference on Physics at the University of Brussels, October, 1961, edited byR. Stoops (Interscience, New York, N.Y., 1961) p. 84.Google Scholar
  49. [49]
    W. R. Smythe:Static and Dynamic Electricity (McGraw-Hill, New York, N.Y., 1939), p. 316, eq. (2).Google Scholar
  50. [50]
    J. D. Jackson:Classical Electrodynamics (Wiley, New York, N.Y., 1962), p. 593.Google Scholar
  51. [51]
    W. A. Bardeen, J. Bijnens andJ.-M. Gérard:Phys. Rev. Lett.,62, 1343 (1989).CrossRefADSGoogle Scholar
  52. [52]
    Recent high-energy U+Th collisions have indicated some interesting neutral-particle-like structure at the level of the electron mass; seeK. Danzmann et al.:Phys. Rev. Lett.,59, 1885 (1987), and references contained therein. However, the interpretation of these results is not clear-cut.CrossRefADSGoogle Scholar
  53. [53]
    InThe Feynman Lectures on Physics, Vol.2 (Addison-Wesley, Reading, 1964), the statement is made on p. 34-3 that «there is no classical explanation» for the electron gyromagnetic ratio of2. The relativistically-spinning sphere model described here, which stands as a counterexample to this statement, was published (ref. [18]) subsequent to the publication of theFeynman Lectures.Google Scholar
  54. [54]
    A. Einstein: inThe Principle of Relativity (Dover, New York, N.Y., 1923), p. 116.Google Scholar
  55. [55]
    C. Moller:The Theory of Relativity (Oxford Univ. Press, London, 1952), p. 318, eq. (42) and the accompanying discussion.Google Scholar
  56. [56]
    M. H. Mac Gregor:Lett. Nuovo Cimento 43, 49 (1985).MathSciNetCrossRefGoogle Scholar
  57. [57]
    M. H. Mac Gregor:Bull. Am. Phys. Soc.,32, 31 (1987); UCRL 94777 (Rev. 1) (June 17, 1987).Google Scholar
  58. [58]
    J. L. Synge andB. A. Griffith:Principles of Mechanics (McGraw-Hill, New York, N.Y., 1942), p. 439.Google Scholar
  59. [59]
    M. H. Mac Gregor:The Nature of the Elementary Particle (Springer-Verlag, Berlin, 1978), p. 79.Google Scholar
  60. [60]
    For example, see ref. [3] p. 145.Google Scholar

Copyright information

© Società Italiana di Fisica 1990

Authors and Affiliations

  • M. H. Mac Gregor
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermore

Personalised recommendations