Il Nuovo Cimento A (1965-1970)

, Volume 106, Issue 4, pp 525–539 | Cite as

On kinetic expansion in scalar-field theory

  • V. E. Rochev


The kinetic expansion is the expansion in the degrees of the kinetic term\(\partial ^2 \). The leading order of this expansion is the static ultralocal approximation, exactly solvable for the scalar-field theory with polynomial interaction at the level of Green's functions. The strong-coupling expansion is closely related with the kinetic expansion. However, the latter has a more complicated combinatorial structure, allowing to relate it with the perturbation theory. In the present paper, a way to sum over the kinetic expansion is proposed, underlying which is the self-consistent expansion in the bilocal source via the Legendre transformation. The self-consistent kinetic expansion allows to solve two principal problems concerning the strong-coupling expansion; the interpretation problem and that of the ultraviolet cut-off removal (renormalization).

PACS 12.90

Miscellaneous theoretical ideas and models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. M. Bender, F. Cooper, G. S. Guralnik andD. H. Sharp:Phys. Rev. D,19, 1865 (1979).MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    E. P. Solodovnikova, A. N. Tavkhelidze andO. A. Khrustalev:Teor. Mat. Fiz.,11, 317 (1972);12, 164 (1972).CrossRefGoogle Scholar
  3. [3]
    A. V. Razumov andA. Yu. Taranov:Teor. Mat. Fiz.,35, 312 (1978).MathSciNetCrossRefGoogle Scholar
  4. [4]
    V. E. Rochev:Proceedings of the XIV Workshop «Problems on High Energy Physics and Field Theory» (Nauka, Moscow, 1992), p. 170.Google Scholar
  5. [5]
    E. R. Caianiello, M. Marinaro andG. Scarpetta:Nuovo Cimento B,44, 299 (1978).MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    R. Menikoff andD. H. Sharp:J. Math. Phys.,19, 135 (1978).MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    E. R. Caianiello andG. Scarpetta:Nuovo Cimento A,22, 448 (1974).CrossRefADSGoogle Scholar
  8. [8]
    J. R. Klauder:Acta Phys. Austriaca,41, 237 (19750.MathSciNetGoogle Scholar
  9. [9]
    W. Kainz:Lett. Nuovo Cimento,12, 217 (1975).CrossRefGoogle Scholar
  10. [10]
    H. G. Dosch:Nucl. Phys. B,96, 525 (1975).CrossRefADSGoogle Scholar
  11. [11]
    A. N. Vassilev:Functional Methods in Quantum Field Theory and Statistics (Leningrad University Press, Leningrad, 1976).Google Scholar
  12. [12]
    S. Kövesi-Domokos:Nuovo Cimento A,33, 769 (1976).CrossRefADSGoogle Scholar
  13. [13]
    S. de Filippo, G. Vilasi, G. Grella andG. Scarpetta:Lett. Nuovo Cimento,27, 369 (1980).MathSciNetCrossRefGoogle Scholar
  14. [14]
    G. Scarpetta:Nuovo Cimento A,60, 57 (1980).CrossRefADSGoogle Scholar
  15. [15]
    G. Grella, M. Marinaro andG. Scarpetta:Nuovo Cimento A,66, 319 (1981).CrossRefADSGoogle Scholar
  16. [16]
    C. De Dominicis:J. Math. Phys.,3, 983 (1962).CrossRefADSGoogle Scholar
  17. [17]
    H. Dahmen andG. Jona-Lasinio:Nuovo Cimento A,52, 807 (1967).CrossRefADSGoogle Scholar
  18. [18]
    S. Coleman, R. Jackiw andH. D. Politzer:Phys. Rev. D,10, 2491 (1974).CrossRefADSGoogle Scholar
  19. [19]
    M. Kobayashi andT. Kugo:Prog. Theor. Phys.,54, 1537 (1975).CrossRefADSGoogle Scholar
  20. [20]
    W. A. Bardeen andM. Moshe:Phys. Rev. D,28, 1372 (1983).CrossRefADSGoogle Scholar
  21. [21]
    K. G. Klimenko:Teor. Mat. Fiz.,80, 363 (1989).MathSciNetCrossRefGoogle Scholar
  22. [22]
    A. D. Linde:Elementary Particle Physics and Inflationary Cosmology (Nauka, Moscow, 1990).Google Scholar
  23. [23]
    J. R. Klauder:Phys. Rev. D,14, 1952 (1976).MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1993

Authors and Affiliations

  1. 1.Institute for High Energy PhysicsProtvinoRussia

Personalised recommendations