Skip to main content
Log in

A human pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of SV40 large T-antigen

  • Basic Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Human pituitary cells proliferate very slowly in vitro. Only a few cell lines have been established, and these have been used mainly for short-term studies. To obtain immortalized cell lines of human pituitary adenomas for in vitro studies, we infected adenoma cells with a replication-defective recombinant human adenovirus, which contains an SV40 early large T-antigen. One of the cell lines (HP75), which has been studied in culture during 60 passages, has been extensively characterized. It expressed the large T-antigen protein and its mRNA, as well as the genes for FSH-β, LH-β and α-subunit (α-SU) of gonadotropin hormone.

The HP75 cell line also expressed the genes of various members of the chromogranin (Cg)/secretogranin (Sg) family, including CgA as well as the prohormone convertases PC1/3 and PC2. CgA was processed to pancreastatin in vitro, which was secreted into the culture medium. Treatment with phorbol 12-myristate 13-acetate (PMA), TGF-β1, and forskolin increased CgA expression in the cells and stimulated pancreastatin secretion into the medium while inhibiting cell growth. The HP75 cell line also expressed TGF-β mRNA isoforms (β1, β2, β3) and the mRNAs for the receptors for TGF-β (RI, RII, and RIII). The cells responded to TGF-β1 in vitro by increasing CgA protein expression and pancreastatin secretion. TGF-β-RII protein and mRNA expression were both increased by PMA.

Ultrastructural studies showed that the HP75 cells had very few dense-core secretory granules and a poorly developed Golgi complex. After treatment with TGF-β1 and PMA, there was an increase in the development of rough endoplasmic reticulum and the Golgi complex.

This is the first report of the development of an immortalized human pituitary cell line that retains some differentiated functions. HP75 can be used to study TGF-β and CgA functions in pituitary cells. Replication-defective recombinant human adenovirus with an SV40 large T-antigen insert can be used to generate other immortalized human pituitary cell lines for in vitro studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohler PO, Bridson WE, Rayford PL, Kohler SE. Hormone production by human pituitary adenomas in culture. Metab Clin Exp 18:782–788, 1969.

    PubMed  CAS  Google Scholar 

  2. O'Sullivan JP, Alexander KM, Jenkins JS. Maintenance of functioning human pituitary tumors in nude athymic mice. J Endocrinol 79:139–140, 1978.

    PubMed  Google Scholar 

  3. Synder J, Hymer WC, Wilfinger WW. Culture of human pituitary prolactin and growth hormone cells. Cell Tissue Res 191:379–388, 1978.

    Google Scholar 

  4. Adams EF, Brajkovich IE, Mashiter K. Hormone secretion by dispersed cell cultures of human pituitary adenomas: effects of theophylline, thyrotropin-releasing hormone, somatostatin, and 2-bromo-alpha-ergocryptine. J Clin Endocrinol Metab 49:120–126, 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Lipson LG, Beitins IZ, Komblith PL, McArthur JW, Friesen HG, Kliman B, et al. Tissue culture studies on human pituitary tumours: long term release of anterior pituitary hormones into the culture medium. Acta Endocrinol 90:421–433, 1979.

    PubMed  CAS  Google Scholar 

  6. Wyche JH, Noteboom WD. Production of a growth factor in cultured human pituitary cells [Abstract]. J Cell Biol 75:81, 1977.

    Google Scholar 

  7. Wyche JH, Noteboom WD. Growth regulation of cultured human pituitary cells by steroidal and nonsteroidal compounds in defined medium. Endocrinology 104:1765–1773, 1979.

    PubMed  CAS  Google Scholar 

  8. See YP, Sun AM, McComb DJ, Gerrie B, Kovacs K. Ultrastructural differentiation in the nude mouse of transformed cells isolated from the human fetal pituitary gland. Cancer Res 42:2336–2343, 1982.

    PubMed  CAS  Google Scholar 

  9. Kikuchi Y, Seki K, Momose E, Kizawa I, Oomori K, Shima K, et al., Establishment and characterization of a new human cultured cell line from a prolactin-secreting pituitary adenoma. Cancer Res 45:5722–5727, 1985.

    PubMed  CAS  Google Scholar 

  10. Woodworth CD, Kreider JW, Mengel L, Miller T, Meng YL, Isom HC. Tumorigenicity of simian virus 40-hepatocyte cell lines. Effect of in vitro and in vivo passage on expression of liver-specific genes and oncogenes. Mol Cell Biol 8:4492–4501, 1988.

    PubMed  CAS  Google Scholar 

  11. Van Doren K, Gluzman Y. Efficient transformation of human fibroblast by adenovirussimian virus 40 recombinants. Mol Cell Biol 4:1653–1656, 1984.

    PubMed  Google Scholar 

  12. Sen A, Dunnmon P, Henderson SA, Gerard RD, Chien KR. Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. J Biol Chem 263:19,132–19,136, 1988.

    CAS  Google Scholar 

  13. Nakamigawa T, Momoi MY, Momoi T, Yanagisawa M. Generation of human myogenic cell lines by the transformation of primary culture with origin-defective SV40 DNA. J Neurol Sci 83:305–319, 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Wyllie FS, Bond JA, Dawson T, White D, Davies R, Wynford-Thomas D. A phenotypically and karyotypically stable human thyroid epithelial line conditionally immortalized by SV40 large T antigen. Cancer Res 52:2938–2945, 1992.

    PubMed  CAS  Google Scholar 

  15. Chou JY. Differentiated mammalian cell lines immortalized by temperature-sensitive tumor virus. Mol Endocrinol 3:1511–1514, 1989.

    PubMed  CAS  Google Scholar 

  16. Lei K-J, gluzman Y, Pan C-J, Chou JY. Immortalization of virus-free human placental cells that express tissue-specific functions. Mol Endocrinol 6:703–712, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Bernard R, Le Bert M, Borde I, Galiana E, Evrard C, Rouget P. Immortalization of different precursors of glial cells with a targeted and temperature-sensitive oncogene. Exp Cell Res 214:373–380, 1994.

    Article  PubMed  CAS  Google Scholar 

  18. Chou JY. Establishment of rat fetal liver lines and characterization of their metabolic and hormonal properties. Use of temperature-sensitive SV40 virus. Methods Enzymol 109: 385–396, 1985.

    PubMed  CAS  Google Scholar 

  19. Hurst BS, Zilberstein M, Chou J-Y, Litman B, Stephens J, Leslie KK. Estrogen receptors are present in human granulosa cells. J Clin Endocrinol Metab 80:229–232, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Windle JJ, Weiner RI, Mellon PL. Cell lines of the pituitary gonadotype lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol 4:597–603, 1990.

    PubMed  CAS  Google Scholar 

  21. Alarid ET, Windle JJ, Whyte DB, Mellon PL. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development 122: 3319–3329, 1996.

    PubMed  CAS  Google Scholar 

  22. Jin L, Scheithauer BW, Young WF Jr, Davis DH, Klee GG, Lloyd RV. Pancreastatin secretion by pituitary adenoma and regulation of chromogranin B mRNA expression. Am J Pathol 148:2057–2066, 1996.

    PubMed  CAS  Google Scholar 

  23. Jin L, Qian X, Kulig E, Sanno N, Scheithauer BW, Kovacs K, et al. Transtorming growth factor-β, transforming growth factor-β receptor II and p27kip1 expression in nontumorous and neoplastic human pituitaries. Am J Pathol 151:509–519, 1997.

    PubMed  CAS  Google Scholar 

  24. Miller GM, Alexander JM, Klibanski A. Gonadotropin-releasing hormone messenger RNA expression in gonadotropin tumors and normal human pituitary. J Clin Endocrinol Metab 81:80–83, 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Sanno N, Jin L, Qian X, Osamura RY, Scheithauer BW, Kovacs K, et al. Gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor messenger ribonucleic acids expression in nontumorous and neoplastic pituitaries. J Clin Endocrinol Metab 82:1974–1982, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Alexander JM, Klibanski A. Gonadotropinreleasing hormone receptor mRNA expression by human pituitary tumors in vitro. J Clin Invest 93:2332–2339, 1994.

    PubMed  CAS  Google Scholar 

  27. Lloyd RV, Cano M, Landefeld TD. The effects of estrogens on tumor growth and on prolactin and growth hormone mRNA expression in rat pituitary tissues. Am J Pathol 133:397–406, 1988.

    PubMed  CAS  Google Scholar 

  28. Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC. Mutational hot spot in the p53 gene in human hepatocellular carcinomas. Nature 350:427–428, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Qian X, Jin L, Grande GP, Lloyd RV. Transforming growth factor-β and p27 expression in pituitary cells. Endocrinology 137:3051–3060, 1996.

    Article  PubMed  CAS  Google Scholar 

  30. Morris TJ, Palm SL, Furcht LT, Buchwald H. The effect of levastatin on [3H] thymidine uptake in HTC-4 and LLC-L1 tumor cells. J Surg Res 61:367–372, 1996.

    Article  PubMed  CAS  Google Scholar 

  31. Tashjian AH Jr, Yasumura Y, Levine L, Sato GH, Parker ML. Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82:342–352, 1968.

    Article  PubMed  CAS  Google Scholar 

  32. Bloomquist BT, Eipper BA, Mains RE. Prohormone-converting enzymes: regulation and evaluation of function using antisense RNA. Mol Endocrinol 5:2014–2024, 1991.

    PubMed  CAS  Google Scholar 

  33. Thiny MT, Antczak C, Fields K, Jin L, Lloyd RV. Effects of estrogen and dexamethasone on a transgenic pituitary cell line. Regulation of hormone and chromogranin/secretogranin expression. Lab Invest 70:899–906, 1994.

    PubMed  CAS  Google Scholar 

  34. Mellon PL, Windle JJ, Weiner RI. Immortalization of neuroendocrine cells by targeted oncogenesis. Rec Prog Horm Res 47:69–96, 1991.

    PubMed  CAS  Google Scholar 

  35. Ozer HL, Slater ML, Dermody JJ, Mandel M. Replication of simian virus 40 DNA in normal human fibroblasts and in fibroblasts from xeroderma pigmentosum. J Virol 39: 481–489, 1981.

    PubMed  CAS  Google Scholar 

  36. Garrel G, McArdle CA, Hemmings BA, Counis R. Gonadotropin-releasing hormone and pituitary adenylate cyclase-activating polypeptide affect levels of cyclic adenosine 3′, 5′-monophosphate-dependent protein kinase A (PKA) subunits in the clonal gonadotrope alpha T3-1 cells: evidence for cross-talk between PKA and protein kinase C pathways. Endocrinology 138:2259–2266, 1997.

    Article  PubMed  CAS  Google Scholar 

  37. Oren M, Maltzman W, Levine AJ. Post-translational regulation of the 54K cellular tumor antigen in normal and transformal cells. Mol Cell Biol 1:101–110, 1981.

    PubMed  CAS  Google Scholar 

  38. Mietz JA, Unger T, Huibregtse JM, Howley PM. The transcriptional transactivation function of wild type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBOJ 11:5013–5020, 1992.

    CAS  Google Scholar 

  39. Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science 222:628–630, 1983.

    Article  PubMed  CAS  Google Scholar 

  40. Winkler H, Fischer-Colbrie R. The chromogranin A and B: the first 25 years and future perspectives. Neuroscience 49:497–528, 1992.

    Article  PubMed  CAS  Google Scholar 

  41. Huttner WB, Gerdes HH, Rosa P. The granin (chromogranin/secretogranin) family. Trend Biochem Sci 16:27–30, 1991.

    Article  PubMed  CAS  Google Scholar 

  42. Steiner DF, Smeekens SP, Ohagi S, Chan SJ. The new enzymology of precursor processing endoproteases. J Biol Chem 267:23,435–23,438, 1992.

    CAS  Google Scholar 

  43. Seidah NG, Chretien M. Pro-protein convertases of subtilisin/kexin family. Methods Enzymol 244:175–188, 1994.

    Article  PubMed  CAS  Google Scholar 

  44. Udupi V, Townsend CM Jr, Gomez G, Zhang T, Greeley GH Jr. Down regulation of prohormone convertase-1 by a phorbol ester. Biochem Biophys Res Commun 217:495–500, 1995.

    Article  PubMed  CAS  Google Scholar 

  45. Wang X-F, Lin HY, Ng-Eaton E, Downward J, Lodish HF, Weinberg RA. Expression cloning and characterization of the TGF-beta type III receptor. Cell 67:797–805, 1991.

    Article  PubMed  CAS  Google Scholar 

  46. Sun L, Wu G, Willson JK, Zborowska E, Yang J, Rajkarunanayake I, et al. Expression of transforming growth factor-beta type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J Biol Chem 269:26,449–26,455, 1994.

    CAS  Google Scholar 

  47. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338, 1995.

    Article  PubMed  CAS  Google Scholar 

  48. Massague J, Polyak K. Mammalian antiproliferative signals and their targets. Curr Opinion Genet Dev 5:91–96, 1995.

    Article  CAS  Google Scholar 

  49. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, et al. Cloning of p27kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78:59–66, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-cdk protein kinase activity, is related to p21. Cell 78:67–74, 1994.

    Article  PubMed  CAS  Google Scholar 

  51. Lloyd RV, Jin L, Qian X, Kulig E. Aberrant p27kip1 expression in endocrine and other tumors. Am J Pathol 150:1–7, 1997.

    Google Scholar 

  52. Castro MG, Goya RG, Sosa YE, Rowe J, Larregina A, Morelli A, et al. Expression of transgenes in normal and neoplastic anterior pituitary cells using recombinant adenovirus: long term expression, cell cycle dependency, and effects on hormone secretion. Endocrinology 138:2184–2194, 1997.

    Article  PubMed  CAS  Google Scholar 

  53. Ham J, Webster J, Bond JA, Jasani B, Lewis MD, Hepburn PJ, Davies JS, Lewis BM, Wynford T, THomas D, Scanlon MF. Immortalized human pituitary cells express glycoprotein α-subunit and thyrotropin B (TSHB). J Clin Endocrinol Metab 83:1598–1603, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, L., Kulig, E., Qian, X. et al. A human pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of SV40 large T-antigen. Endocr Pathol 9, 169–184 (1998). https://doi.org/10.1007/BF02782609

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02782609

Key Words

Navigation