Advertisement

Metallurgical Transactions A

, Volume 21, Issue 1, pp 389–399 | Cite as

Influence of test parameters on the thermal-mechanical fatigue behavior of a superalloy

  • J. L. Malpertu
  • L. Rémy
Mechanical Bihavior

Abstract

The thermal-mechanical fatigue (TMF) behavior of IN-100, a cast nickel-base superalloy, was investigated with a basic mechanical strain-temperature loop applied in a temperature range from 600 °C to 1050 °C (873 to 1323 K). Peak strains were applied at intermediate temperatures, giving a faithful simulation of real component parts. Tests with or without a mean strain were used; other tests involved a longer period or a tensile hold time, and they were compared with conventional “in-phase” TMF cycles. An interrupted test procedure was used with a plastic replication technique to define a conventional TMF life to 0.3-mm crack depth, as well as a life to 50-µm, crack depth, to characterize the crack initiation period. Some stress-strain hysteresis loops were reported. Thermal-mechanical fatigue life was found to be dependent upon test parameters, while the life to crack initiation was not. Oxidation of specimens and micro-cracks was found to be important in all the tests. These results were then discussed and compared with those under low cycle fatigue at high temperature.

Keywords

Strain Range Crack Depth Interdendritic Area Cycle Shape Tensile Hold Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J.E. Glenny: inHigh Temperature Materials in Gas Turbines, P.R. Sahm and M.O. Speidel, eds., Elsevier, Amsterdam, 1974, pp. 258–77.Google Scholar
  2. 2.
    S. Taira: inFatigue at Elevated Temperatures, ASTM STP 520, American Society for Testing and Materials, Philadelphia, PA, 1973, pp. 239–54.Google Scholar
  3. 3.
    D.A. Spera: NASA-TND-5485, NASA, Washington, DC, 1969.Google Scholar
  4. 4.
    G.R. Halford and S.S. Manson: inThermal Fatigue of Materials and Components, ASTM STP 612, D.A. Spera and D.F. Mowbray, eds., American Society for Testing and Materials, Philadelphia, PA, 1976, pp. 239–54.Google Scholar
  5. 5.
    F. Rezai-Aria: Ph.D. Thesis, Université Paris XI, Orsay, 1986.Google Scholar
  6. 6.
    L. Rémy, F. Rezai-Aria, R. Danzer, and W. Hoffelner: inLow Cycle Fatigue, ASTM STP 942, H.D. Solomon, G.R. Halford, L.R. Kaisand, and B.N. Leis, eds., American Society for Testing and Materials, Philadelphia, PA, 1988, pp. 1115–32.Google Scholar
  7. 7.
    F. Rezai-Aria, M. François, and L. Rémy:Fatigue and Fracture of Engineering Materials and Structures, 1988, vol. 11, pp. 277–89.CrossRefGoogle Scholar
  8. 8.
    F. Rezai-Aria, B. Dambrine, and L. Rémy:Fatigue and Fracture of Engineering Materials and Structures, 1988, vol. 11, pp. 291–302.CrossRefGoogle Scholar
  9. 9.
    G. Cailletaud and J.L. Chaboche: inMechanical Behaviour of Materials III, c. 3rd Int. Conf. K.J. Miller and R.F. Smith, eds., Pergamon Press, Oxford, 1979, vol. 2, pp. 23–32.Google Scholar
  10. 10.
    G. Cailletaud, J.P. Culie, and H. Kaczmarek: inMechanical Behaviour of Materials IV, Proc. 4th Int. Conf., J. Carlsson and N.G. Ohlson, eds., Pergamon Press, Oxford, 1973, vol. 1, pp. 255–61.Google Scholar
  11. 11.
    R.J.E. Glenny, J.E. Northwood, S.W.K. Shaw, and T.A. Taylor:J. Inst. Met., 1958-59, vol. 87, pp. 294–302.Google Scholar
  12. 12.
    D.A. Woodford and D.F. Mowbray:Mater. Sci. Eng., 1974, vol. 16, pp. 5–43.CrossRefGoogle Scholar
  13. 13.
    F. Rezai-Aria, L. Rémy, C. Herman, and B. Dambrine: inMechanical Behaviour of Materials IV, Proc. 4th Int. Conf., J. Carlsson and N.G. Ohlson, eds., Pergamon Press, Oxford, 1984, vol. 1, pp. 247–53.Google Scholar
  14. 14.
    D.F. Mowbray and J.E. McConnelee: inThermal Fatigue of Ma terials and Components, ASTM STP 612, D.A. Spera and D.F. Mowbray, eds., American Society for Testing and Materials, Philadelphia, PA, 1976, pp. 10–29.Google Scholar
  15. 15.
    S.W. Hopkins: inThermal Fatigue of Materials and Compo nents, ASTM STP 612, D.A. Spera and D.F. Mowbray, eds., American Society for Testing and Materials, Philadelphia, PA, 1976, pp. 157–69.Google Scholar
  16. 16.
    C.A. Rau, Jr., A.E. Gemma, and G.R. Leverant: inFatigue at Elevated Temperatures, ASTM STP 520, American Society for Testing and Materials, Philadelphia, PA, 1973, pp. 166–78.Google Scholar
  17. 17.
    K. Kuwabara and A. Nitta: inMechanical Behaviour of Materials III, Proc. 3rd Int. Conf., K.J. Miller and R.F. Smith, eds., Pergamon Press, Oxford, 1979, vol. 2, pp. 69–78.Google Scholar
  18. 18.
    M. Fujino and S. Taira: inMechanical Behavior of Materials III, Proc. 3rd Int. Conf., K.J. Miller and R.F. Smith, eds., Pergamon Press, Oxford, 1979, vol. 2, pp. 49–58.Google Scholar
  19. 19.
    R. Bill: inFatigue at High Temperature, Proc. Journées Inter nationales de Printemps, Commission de Fatigue, Société Française de Métallurgie, Paris, June 9–11, 1986, pp. 345–58.Google Scholar
  20. 20.
    F. Engberg and L.E. Larsson:Thermomechanical and Low Cycle Fatigue of Advanced Nickel Base Alloys, COST 50-round 3, Project S.3, Final report, Swedish Institute for Metals Research, Stockholm, 1984.Google Scholar
  21. 21.
    E.M. Jordan and G.J. Meyers:Eng. Fract. Mech., 1986, vol. 23, pp. 345–58.CrossRefGoogle Scholar
  22. 22.
    R.P. Skelton:inFatigue at High Temperature, R.P. Skelton, ed., Applied Science, London, 1983, pp. 1–62.Google Scholar
  23. 23.
    L. Rémy, M. Reger, J. Reuchet, and F. Rezai-Aria: inHigh Temperature Alloys for Gas Turbines 1982, Conf. Proc., Liège, Belgium, Oct. 4–6, 1982, R. Brunetaud, D. Coutsouradis, T.B. Gibbons, Y. Lindblom, D.B. Meadowcroft, and R. Stickler, eds., D. Reidel, Dordrecht, The Netherlands, 1982, pp. 619–32.Google Scholar
  24. 24.
    J. Reuchet and L. Rémy:Mater. Sci. Eng., 1983, vol. 58, pp. 19–32.CrossRefGoogle Scholar
  25. 25.
    J. Bressers, L. Rémy, and W. Hoffelner: inHigh Temperature Alloys for Gas Turbines and Other Applications, W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T.B. Gibbons, I. Kuernes, Y. Lindblom, J.B. Marriott, and D.B. Meadowcroft, eds., Reidel, Dordrecht, The Netherlands, 1986, vol. 1, pp. 441–68.Google Scholar
  26. 26.
    N. Marchand and R.M.N. Pelloux: inHigh Temperature Alloys for Gas Turbines and Other Applications, W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T.B. Gibbons, I. Kuernes, Y. Lindblom, J.B. Marriott, and D.B. Meadowcroft, eds., Reidel, Dordrecht, The Netherlands, 1986, vol. 2, pp. 1547–58.Google Scholar
  27. 27.
    M. Reger and L. Rémy:Mater. Sci. Eng. A, 1988, vol. 101, pp. 47–54 and 55–63.CrossRefGoogle Scholar
  28. 28.
    M. Reger and L. Rémy:Metall. Trans. A, 1988, vol. 19A, pp. 2259–68.Google Scholar
  29. 29.
    J.L. Malpertu and L. Rémy: inLow Cycle Fatigue, ASTM STP 942, H.D. Solomon, G.R. Halford, L.R. Kaisand, and B.N. Leis, eds., American Society for Testing and Materials, Philadelphia, PA, 1988, pp. 657–71.Google Scholar
  30. 30.
    F. Rezai-Aria and L. Rémy:Eng. Fract. Mech., 1989, vol. 34, pp. 282–94.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1990

Authors and Affiliations

  • J. L. Malpertu
    • 1
  • L. Rémy
    • 2
  1. 1.Etablissement Technique d’ AngersFrance
  2. 2.Centre des MatériauxEvry CedexFrance

Personalised recommendations