Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 89, Issue 3, pp 267–275 | Cite as

A proposal for an improved treatment of the\(\varphi _2^4 \) quantum solitonquantum soliton

  • M. Altenbokum
  • U. B. Kaulfuss
Article

Summary

The recently developed Hartree approximation for the\(\varphi _2^4 \) quantum soliton is reviwed. Higher-order corrections to the soliton mass can be worked out by utilizing the high-precision coupled cluster method with arbitrary accuracy. A preliminary test indicates the necessity for further investigations, as the used truncation scheme, which ignored all continuum excitations, becomes unreliable when approaching the critical region.

PACS.11.10.Lm

Nonlinear or nonlocal theories and models 

Riassunto

Si esamina l’approssimazione di Hartree sviluppata recentemente per il solitone quantico\(\varphi _2^4 \). Si calcolano correzioni d’ordine superiore alla massa solitonica utilizzando il metodo ad alta precisione del cluster accoppiato con accuratezza arbitraria. Un test preliminare indica la necessità di ulteriori ricerche, poichè lo schema di troncamento usato, che ignora tutte le eccitazioni nel continuo, diventa inattendibile quando si ci avvicina alla regione critica.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. Rajaraman:Solitons and Instantons (North-Holland Publ. Co., Amsterdam, 1982).Google Scholar
  2. (2).
    R. Jackiw:Rev. Mod. Phys.,49, 681 (1977).MathSciNetCrossRefADSGoogle Scholar
  3. (3).
    N. H. Christ andT. D. Lee:Phys. Rev. D,12, 1606 (1975).MathSciNetCrossRefADSGoogle Scholar
  4. (4).
    L. Maharana andH. J. W. Müller-Kirsten: University of Kaiserslautern preprint (1984).Google Scholar
  5. (5).
    M. Altenbokum andH. Kümmel: submitted for publication.Google Scholar
  6. (6).
    M. Altenbokum: Thesis, Ruhr-Universität Bochum (1984) and submitted for publication.Google Scholar
  7. (7).
    S. J. Chang:Phys. Rev. D,12, 1071 (1975);13, 2778 (1976).CrossRefADSGoogle Scholar
  8. (8).
    F. Coester andH. Kümmel:Nucl. Phys.,17, 477 (1960).CrossRefGoogle Scholar
  9. (9).
    F. Coester:Nucl. Phys.,7, 421 (1958).CrossRefGoogle Scholar
  10. (10).
    H. Kümmel, K. H. Lührmann andJ. G. Zabolitzky:Phys. Rep. C,36, 1 (1978).CrossRefADSGoogle Scholar
  11. (11).
    J. Hubbard:Proc. R. Soc. London,240, 539 (1957).MathSciNetCrossRefADSGoogle Scholar
  12. (12).
    U. B. Kaulfuss: Thesis, Ruhr-Universität Bochum (1984) and submitted for publication.Google Scholar
  13. (13).
    P. Ueberholz: Diplomarbeit, Ruhr-Universität Bochum (1984);C. S. Hsue, H. Kümmel andP. Ueberholz: submitted for publication.Google Scholar
  14. (14).
    K. Emrich:Nucl. Phys. A,351, 397, 397 (1981).CrossRefADSGoogle Scholar
  15. (15).
    H. Kümmel andD. Lauer: in preparation.Google Scholar
  16. (16).
    C. S. Hsue:Phys. Rev. D,29, 463 (1984);M. M. Khin: Diplomarbeit, Ruhr-Universität Bochum (1985).MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1985

Authors and Affiliations

  • M. Altenbokum
    • 1
  • U. B. Kaulfuss
    • 1
  1. 1.Institut für Theoretische Physik IIRuhr-Universität BochumBochum 1B.R.D.

Personalised recommendations