Estuaries and Coasts

, Volume 29, Issue 2, pp 340–344 | Cite as

Allometric laws and prediction in estuarine and coastal ecology

  • Lora A. Harris
  • Carlos M. Duarte
  • Scott W. Nixon
Open Access


A theoretical and quantitative framework of first principles would benefit estuarine and coastal ecologists in search of predictions to enhance our understanding and management of marine resources. The Metabolic Theory of Ecology describes a possible unifying theory for ecology, including mechanistically derived equations that predict scaling exponents observed in empirical, allometric relationships from individuals to ecosystems. The controversy surrounding this theory should stimulate our exploration of its potential use in the coastal realm, where questions specific to an applied science may suggest new refinements and derivations, contributing to the overall progress of ecology.


Marine Ecology Progress Series Allometric Scaling Ecosystem Metabolism Metabolic Theory Unattainable Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Agrawal, A. A. 2004. Special Features Editor at Estuaries for the Forum on the Metabolic Theory of Ecology.Ecology 85:1771–1821.CrossRefGoogle Scholar
  2. Brody, S. 1945. Bioenergetics and Growth, with special reference to the efficiency complex in domestic animals. Reinhold, New York.Google Scholar
  3. Brown, J. H. andJ. F. Gillooly. 2003. Ecological food webs: High-quality data facilitate theoretical unification.Proceedings of the National Academy of Sciences (USA) 100:1467–1468.CrossRefGoogle Scholar
  4. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, andG. B. West. 2004. Toward a metabolic theory of ecology.Ecology 85: 1771–1789.CrossRefGoogle Scholar
  5. Canham, C. D., J. J. Cole, and W. K. Lauenroth (eds.) 2003, Models in Ecosystem Science. Princeton University Press, Princeton, New Jersey.Google Scholar
  6. Clark, J. S., S. R. Carpenter, M. Barber, S. Collins, A. Dobson, J. A. Foley, D. M. Lodge, M. Pascual, R. Pielke, Jr.W. Pizer, C. Pringle, M. V. Reid, K. A. Rose, O. Sala, W. H. Schlesinger, D. H. Wall, andD. Wear. 2001. Ecological forecasts: An emerging imperative.Science 293:658–660.Google Scholar
  7. Cyr, H. andS. C. Walker. 2004. An illusion of mechanistic understanding.Ecology 85:1802–1804.CrossRefGoogle Scholar
  8. Del Giorgio, P. A. andC. M. Duarte. 2002. Respiration in the open ocean.Nature 420:379–384.CrossRefGoogle Scholar
  9. Dinmore, T. A. andS. Jennings. 2004. Predicting abundance-body mass relationships in benthic infaunal communities.Marine Ecology Progress Series 276:289–292.CrossRefGoogle Scholar
  10. Dodds, P. S., D. H. Rothman, andJ. S. Weitz. 2001. Re-examination of the ‘3/4 law’ of metabolism.Journal of Theoretical Biology 209:9–27.CrossRefGoogle Scholar
  11. Enquist, B. J., D. H. Brown, andG. B. West. 1998. Allometric scaling of plant energetics and population density.Nature 395: 163–165.CrossRefGoogle Scholar
  12. Enquist, B. J., E. P. Economo, T. E. Huxman, A. P. Allen, D. D. Ignace, andJ. F. Gillooly. 2003. Scaling metabolism from organisms to ecosystems.Nature 423:639–642.CrossRefGoogle Scholar
  13. Finkel, Z. V., A. J. Irwin, andW. Schofield. 2004. Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton.Marine Ecology Progress Series 273:269–279.CrossRefGoogle Scholar
  14. Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, andE. L. Charnov. 2001. Effects of size and temperature on metabolic rate.Science 293:2248–2251.CrossRefGoogle Scholar
  15. Harte, J. 2002. Toward a synthesis of the Newtonian and Darwinian world views.Physics Today 55:29–35.CrossRefGoogle Scholar
  16. Intergovernmental Panel on Climate Change (IPCC). 2001. Climate change 2001: A summary report. IPCC. Wembley, U.K.Google Scholar
  17. Jennings, S. andJ. L. Blanchard. 2004. Fish abundance with no fishing: Predictions based on macroecological theory.Journal of Animal Ecology 73:632–642.CrossRefGoogle Scholar
  18. Kerr, S. R. andL. M. Dickie. 2001. The Biomass Spectrum. Columbia University Press, New York.Google Scholar
  19. Kleiber, M.. 1932. Body size and metabolism.Hilgardia 6:315–353.Google Scholar
  20. Laevastu, T. andH. A. Larkins. 1981. Marine Fisheries Ecosystem: Its Quantitative Evaluation and Management. Fishing News Books Ltd, Norwich, U.K.Google Scholar
  21. Latour, R. J., M. J. Brush, andC. F. Bonzek. 2003. Toward ecosystem-based fisheries management: Strategies for multispecies modeling and associated data requirements.Fisheries 28:10–22.CrossRefGoogle Scholar
  22. Lehman, J. T. 1986. The goal of understanding in limnology.Limnology and Oceanography 31:1160–1166.Google Scholar
  23. Levins, R. 1966. The strategy of model building in population biology.American Scientist 54:423–431.Google Scholar
  24. Nielsen, S. L., S. Enríquez, C. M. Duarte, andK. Sand-Jensen. 1996. Scaling of maximum growth rates across photosynthetic organisms.Functional Ecology 10:167–175.CrossRefGoogle Scholar
  25. Niklas, K. J. 1994. Plant Allometry: The Scaling of Form and Process. University of Chicago Press, Chicago, Illinois.Google Scholar
  26. Pauly, D., V. Christensen andC. Walters. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries.ICES Journal of Marine Science 57:697–706.CrossRefGoogle Scholar
  27. Peters, R. H. 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge, U.K.Google Scholar
  28. Peters, R. H. 1986. The role of prediction in limnology.Limnology and Oceanography 31:1143–1159.CrossRefGoogle Scholar
  29. Peters, R. H. 1991. A Critique For Ecology. Cambridge University Press. New York.Google Scholar
  30. Pittock, A. B. 1999. Coral reefs and environmental change: Adaptation to what?American Zoologist 39:10–29.Google Scholar
  31. Savage, V. M., J. F. Gillooly, W. H. Woodruff, G. B. West, A. P. Allen, B. J. Enquist, andJ. H. Brown. 2004. The predominance of quarter-power scaling in biology.Functional Ecology 18:257–282.CrossRefGoogle Scholar
  32. Scavia, D., J. C. Field, D. F. Boesch, R. W. Buddemeier, V. Burkett, D. R. Cayan, M. Fogarty, M. A. Harwell, R. W. Howarth, C. Mason, D. J. Reed, T. C. Royer, A. H. Sallenger, andJ. G. Titus. 2002. Climate change impacts on U.S. coastal and marine ecosystems.Estuaries 25:149–164.CrossRefGoogle Scholar
  33. Tilman, D., J. Hillerislambers, S. Harpole, R. Dybzinski, J. Fargione, C. Clark, andC. Lehman. 2004. Does metabolic theory apply to community ecology? It's a matter of scale.Ecology 85:1797–1799.CrossRefGoogle Scholar
  34. Vasseur, D. A. andK. S. McCann. 2005. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics.American Naturalist 166:184–198.CrossRefGoogle Scholar
  35. Vidondo, B., Y. T. Prairie, J. M. Blanco, andC. M. Duarte. 1997. Some aspects of the analysis of size spectra in aquatic ecology.Limnology and Oceanography 42:184–192.CrossRefGoogle Scholar
  36. West, G. B., J. H. Brown, andB. J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology.Science 276:122–126.CrossRefGoogle Scholar
  37. West, G. B., J. H. Brown, andB. J. Enquist. 1999a. The fourth dimension of life: Fractal geometry and allometric scaling of organisms.Science 284:1677–1679.CrossRefGoogle Scholar
  38. West, G. B., J. H. Brown, andB. J. Enquist. 1999b. A general model for the structure and allometry of plant vascular systems.Nature 400:664–667.CrossRefGoogle Scholar

Source of Unpublished Materials

  1. American Society of Limnology and Oceanography. Unpublished data. Abstracts at abstracts/SS37.htmGoogle Scholar

Copyright information

© Estuarine Research Federation 2006

Authors and Affiliations

  • Lora A. Harris
    • 1
  • Carlos M. Duarte
    • 2
  • Scott W. Nixon
    • 1
  1. 1.Graduate School of OceanographyUniversity of Rhode IslandNarrangansett
  2. 2.Grup d'Oceanografia InterdisciplinarIMEDEA (CSIC-UIB) Institut Mediterrani d'Estudis AvançatEsporles, Illes BalearsSpain

Personalised recommendations