Skip to main content
Log in

Introduzione di una lunghezza fondamentale nella teoria classica dell’elettrone

  • Published:
Il Nuovo Cimento (1943-1954)

Riassunto

Dopo un esame delle difficoltà inerenti alle teorie classiche dell’elettrone in interazione col campo elettromagnetico, con particolare riguardo alle teorie di Abraham-Lorentz e di Dirac-Eliezer, viene proposta attraverso l’introduzione di una lunghezza fondamentale avente il carattere di costante universale, una equazione alle differenze finite, relativisticamente invariante, che sembra in grado di superare le principali delle suddette difficoltà. Si mostrano alcune sue applicazioni a problemi semplici e si imposta una formulazione generale lagrangiana. Vengono poi stabilite le connessioni di tale teoria con altre (particelle polo-dipolari, ecc., campi a interazione non locale) e se ne studia l’approssimazione non relativistica che viene a coincidere con modelli più volte proposti di elettrone esteso. Infine si mostra come tale teoria possa essere inquadrata in una visione generale del campo elettromagnetico e dell’interazione di esso con le proprie sorgenti. La massa dell’elettrone è qui considerata di natura elettromagnetica. Come ulteriore interessante conseguenza viene esaminata la possibilità di una interpretazione classica del momento magnetico anomalo dell’elettrone.

Summary

In this paper we examine the main difficulties connected with a classical theory of the electron interacting with the electromagnetic field, expecially and particularly those contained in the theories of Abraham-Lorentz and Dirac-Eliezer. Accepting the necessity of the introduction, still in the classical relativistic electrodynamics, of a fundamental length, which has been proposed since long time by many people, we propose a finite-difference equation, relativistically invariant, which seems to eliminate the above said difficulties. Some applications of this equation to simple problems are discussed and a general lagrangian formulation of the theory is sketched, in which we use the methods of Ostrogradski and of Pais-Uhlenbeck. The enormous difficulties of this formulation, which should be the basis for a quantization, are emphasized. Then we state some connection between the present theory and others, namely with non-local field theories and with the «Pol-Dipol Teilchen» ofHönl et al. The non relativistic approximation of our equation is shown to be equivalent with some models that have been proposed by various authors, and particularly with a model of spheric electron having the charge spread out on its surface. Finally we show how our theory could be inserted in the frame of a general theory of the electro-magnetic field interacting with its own sources, in which the mass of the electrons is completely of e.m. nature, without violating the principle of relativity. The last interesting consequence is the possibility of a classical interpretation of the anomalous magnetic moment of the electron, connected with the «microscopical solutions» describing the behaviour of the electron in small regions (of the order of the fundamental length) of space-time. This ‘internal structure» of the electron could play a very important role in a future quantized theory, where it could give perhaps rise to a mass spectrum of elementary particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. H. A. Lorentz:The Theory of Electrons (Leipzig, 1916).

  2. P. A. M. Dirac:Proc. Roy. Soc., A167, 148 (1938);Ann. Inst. Poincaré,9, 13 (1938).

    Article  ADS  Google Scholar 

  3. M. Schönberg:Phys. Rev.,76, 211 (1945);C. J. Eliezer eA. W. Mailvaganam:Proc. Camb. Phil. Soc.,41, 148 (1945);P. Caldirola:Nuovo Cimento,5, 99 (1948);A. Loinger:Nuovo Cimento,6, 360 (1949).

    Google Scholar 

  4. C. J. Eliezer:Proc. Camb. Phil. Soc.,33, 173 (1943).

    Article  ADS  MathSciNet  Google Scholar 

  5. C. J. Eliezer:Rev. Mod. Phys.,19, 147 (1947).

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Zin:Nuovo Cimento,6, 1 (1949).

    Article  MathSciNet  Google Scholar 

  7. W. Heisenberg:Ann. der Phys.,32, 20 (1938).

    Article  ADS  Google Scholar 

  8. A. March:Quantum Mechanics of Particles and Wave Fields (New York, 1951).

  9. A. Landé:Journ. Franklin Inst.,229, 767 (1940).

    Article  Google Scholar 

  10. M. Born:Rev. Mod. Phys.,21, 463 (1949).

    Article  ADS  Google Scholar 

  11. H. S. Snyder:Phys. Rev.,71, 38 (1947).

    Article  ADS  Google Scholar 

  12. H. T. Flint:Phil. Mag.,7, 29, 33 (1940);Phys. Rev.,74, 209 (1948).

    Google Scholar 

  13. B. T. Darling:Phys. Rev.,80, 460 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  14. B. T. Darling eP. R. Zilsel:Phys. Rev.,91, 1252 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  15. cfr.P. Caldirola:Nuovo Cimento,10, 1747 (1953).

    Article  MathSciNet  Google Scholar 

  16. S. veda ad esempio:E. Pascal:Calcolo delle variazioni e delle differenze finite (Milano, 1897).

  17. L. Möglich eR. Rompe:Zeits. f. Phys.,113, 740 (1939).

    Article  ADS  Google Scholar 

  18. Ostrogradsky:Mém. de l’Acad. de St. Pétersbourg,6, 385 (1850); cfr.E. T. Whittaker:A Treatise on the Analitical Dynamics (Cambridge, 1917), Cap. X, e per generalizzazioni:J. Weyssenhoff:Acta Phys. Polonica,11, 49 (1951).

    Google Scholar 

  19. A. Pais eG. E. Uhlenbeck:Phys. Rev.,78, 145 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Waldmann:Zeits. f. Naturf.,8a, 329 (1953).

    ADS  Google Scholar 

  21. Cfr.:H. Hönl:Feldmechanik des Elektrons und der Elementarteilchen, inErgebnisse der Exakten Naturwissenschaften,26, 315 e segg. (1952).

  22. D. Bohm eM. Weinstein:Phys. Rev.,74, 1784 (1948).

    ADS  Google Scholar 

  23. C. J. Eliezer:Proc. Camb. Phil. Soc.,46, 198 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Page:Phys. Rev.,9, 376 (1918).

    Article  ADS  Google Scholar 

  25. Vogliamo notare che, seguendo un ordine di idee analogo a quello da noi esposto in questo paragrafo,G. Höler (Ann. der Phys.,9, 91 (1951)) ha mostrato che l’equazione non relativistica diMöglich eRompe (cfr. §4) come pure quella non relativistica (3), già considerata daEliezer, possono essere dedotte dalla teoria del campo elettromagnetico secondo la formulazione diF. Bopp:Ann. der Phys.,42, 573 (1943);Zeits. f. Naturf.,1, 53 (1946).

    Article  Google Scholar 

  26. J. Rzewuski:Acta Phys. Polonica,9, 203 (1953).

    MathSciNet  Google Scholar 

  27. A. P. Fokker:Zeits. f. Phys.,58, 886 (1929);Physica,12, 145 (1932).

    Article  Google Scholar 

  28. R. P. Feynman:Phys. Rev.,74, 939 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  29. Cfr.F. Duimio:Nuovo Cimento,11, 326 (1954).A. Landé:Phys. Rev.,76, 1176 (1949);77, 814 (1950); e daE. Groschwitz:Zeits. f. Naturf.,7 a, 458 (1952).

    Article  MathSciNet  Google Scholar 

  30. Cfr.P. Caldirola:Nuovo Cimento,11, 108 (1954).

    Article  MathSciNet  Google Scholar 

  31. J. E. Nafe eE. B. Nelson:Phys. Rev.,73, 718 (1948).

    Article  ADS  Google Scholar 

  32. J. Schwinger:Phys. Rev.,73, 416 (1948);R. Karplus eA. Klein:Phys. Rev.,85, 972 (1952).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldirola, P., Duimio, F. Introduzione di una lunghezza fondamentale nella teoria classica dell’elettrone. Nuovo Cim 12, 699–732 (1954). https://doi.org/10.1007/BF02781836

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02781836

Navigation