Estuaries and Coasts

, Volume 29, Issue 6, pp 1132–1149 | Cite as

Bioenergetics modeling to investigate habitat use by the nonindigenous crab,Carcinus maenas, in Willapa Bay, Washington

  • P. Sean McDonald
  • Kirstin K. Holsman
  • David A. Beauchamp
  • Brett R. Dumbauld
  • David A. Armstrong


A bioenergetics model was developed and applied to questions of habitat use and migration behavior of nonindigenous European green crab (Carcinus maenas) in Willapa Bay, Washington, USA. The model was parameterized using existing data from published studies on the ecology and physiology ofC. maenas and allied brachyuran crabs., Simulations of the model were run describing four scenarios of habitat use and behavior during a 214-d simulation period (April–October) including crabs occupying mid littoral habitat, high littoral habitat, sublittoral habitat, and sublittoral habitat but undertaking intertidal migrations. Monthly trapping was done along an intertidal gradient in Willapa Bay to determine the actual distribution of crabs for the same time interval as the simulation period, and model results were compared to the observed pattern. Model estimates suggest no intrinsic energetic incentive for crabs to occupy littoral habitats since metabolic costs were c. 6% higher for these individuals than their sublittoral counterparts. Crabs in the littoral simulations were also less efficient than sublittoral crabs at converting consumed energy into growth. Monthly trapping revealed thatC. maenas are found predominantly in mid littoral habitats of Willapa Bay and there is no evidence of resident sublittoral populations. The discrepancy intimates the significance of other factors, including interspecific interactions, that are not incorporated into the model but nonetheless increase metabolic demand. Agonistic encounters with native Dungeness crabs (Cancer magister) may be chief among these additional costs, andC. maenas may largely avoid interactions by remaining in littoral habitats neglected by native crabs, such as meadows of nonindigenous smooth cordgrass (Spartina alterniflora). AdultC. maenas in Willapa Bay may occupy tidal elevations that minimize such encounters, and metabolic costs, while simultaneously maximizing submersion time and foraging opportunities.


Tidal Elevation Experimental Marine Biology Shore Crab Specific Dynamic Action Littoral Habitat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bartell, S. M., J. E. Breck, R. H. Gardner, andA. L. Brenkert. 1986. Individual parameter perturbation and error analysis of fish bioenergetics models.Canadian Journal of Fisheries and Aquatic Sciences 43:160–168.Google Scholar
  2. Berrill, M. andM. Arsenault. 1982. Mating behavior of the green shore crabCarcinus maenas.Bulletin of Marine Science 32:632–638.Google Scholar
  3. Berrill, M. andD. Berrill. 1981. A Sierra Club Naturalist's Guide: The North Atlantic Coast. Sierra Club, San Francisco, California.Google Scholar
  4. Broekhuysen, G. J. 1936. On the development, growth, and distribution ofCarcinus maenas (L.).Archives Neerlandaises de Zoologie 2:257–339.CrossRefGoogle Scholar
  5. Brylawski, B. J. andT. J. Miller. 2003. Bioenergetic modeling of the blue crab (Callinectes sapidus) using the fish bioenergetics (3.0) computer program.Bulletin of Marine Science 72:491–504.Google Scholar
  6. Burrows, M. T., R. N. Gibson, L. Robb, andC. A. Comely. 1994. Temporal patterns of movement in juvenile flatfishes and their predators: Underwater television observations.Journal of Experimental Marine Biology and Ecology 177:251–268.CrossRefGoogle Scholar
  7. Carlton, J. T. andA. N. Cohen. 2003. Episodic global dispersal in shallow water marine organisms: The case history of the European shore crabsCarcinus maenas andC. aestuarii.Journal of Biogeography 30:1809–1820.CrossRefGoogle Scholar
  8. Carr, E. M. andB. R. Dumbauld., 2000. Status of the European green crab invasion in Washington coastal estuaries: Can expansion be prevented?Journal of Shellfish Research 19:629–630.Google Scholar
  9. Ciannelli, L., R. D. Brodeur, andT. W. Buckley. 1998. Development and application of a bioenergetics model for juvenile walleye pollock.Journal of Fish Biology 52:879–898.CrossRefGoogle Scholar
  10. Clark, M. E., T. G. Wolcott, D. L. Wolcott, andA. H. Hines. 1999. Intraspecific interference among foraging blue crabsCallinectes sapidus: Interactive effects of predator density and prey patch distribution.Marine Ecology Progress Series 178:69–78.CrossRefGoogle Scholar
  11. Cohen, A. N. andJ. T. Carlton. 1998. Accelerating invasion rate in a highly invaded estuary.Science 279:555–558.CrossRefGoogle Scholar
  12. Cohen, A. N., J. T. Carlton, andM. C. Fountain. 1995. Introduction, dispersal and potential impacts of the green crabCarcinus maenas in San Francisco Bay, California.Marine Biology 122:225–237.Google Scholar
  13. Crisp, D. J. 1971. Energy flow measurements, p. 197–279.In N. A. Holme and A. D. McIntyre (eds.), Methods for the Study of Marine Benthos, Volume 16. Blackwell Scientific Publications, Oxford.Google Scholar
  14. Crothers, J. H. 1967. The biology of the shore crabCarcinus maenas (L.) 1. The background-anatomy, growth and life history.Field Studies 2:407–434.Google Scholar
  15. Crothers, J. H. 1968. The biology of the shore crab,Carcinus maenas (L.) 2. The life of the adult crab.Field Studies 2:579–614.Google Scholar
  16. Dagg, M. J. 1974. Loss of prey contents during feeding by an aquatic predator.Ecology 55:903–906.CrossRefGoogle Scholar
  17. Dare, P. J. andD. B. Edwards. 1981. Underwater television observations on the intertidal, movements of shore crabs,Carcinus maenas, across a mudflat.Journal of the Marine Biological Association of the United Kingdom 61:107–116.CrossRefGoogle Scholar
  18. deRivera, C. E., G. M. Ruiz, A. H. Hines, and P. Jivoff. 2005. Biotic resistance to invasion: Native predator limits abundance and distribution of an introduced crab.Ecology 86:3364–3376.CrossRefGoogle Scholar
  19. Elner, R. W. 1980. The influence of temperature, sex and chela size in the foraging strategy of the shore crab,Carcinus maenas (L.).Marine Behavior and Physiology 7:15–24.CrossRefGoogle Scholar
  20. Elner, R. W. andR. N. Hughes. 1978. Energy maximization in the diet of the shore crab,Carcinus maenas.Journal of Animal Ecology 47:103–116.CrossRefGoogle Scholar
  21. Elton, C. S. 1958. The Ecology of Invasions by Animals and Plants. Methuen and Company Limited, London, England.Google Scholar
  22. Eriksson, S. andA. M. Edlund. 1977. On the ecological energetics of 0-groupCarcinus maenas (L.) from a shallow sandy bottom in Gullmar fjord, Sweden.Journal of Experimental Marine Biology and Ecology 30:233–248.CrossRefGoogle Scholar
  23. Eriksson, S., S. Evans, andB. Tallmark. 1975. On the coexistence of scavengers on shallow, sandy bottoms in Gullmar Fjord (Sweden): Activity patterns and feeding ability.Zoon 3:121–124.Google Scholar
  24. Feldman, K. L., D. A. Armstrong, B. R. Dumbauld, T. H. Dewitt, andD. C. Doty. 2000. Oysters, crabs, and burrowing shrimp: Review of an environmental conflict over aquatic resources and pesticide use in Washington State’s (USA) coastal estuaries.Estuaries 23:141–176.CrossRefGoogle Scholar
  25. Figlar-Barnes, R., B. Dumbauld, A. Randall, andB. E. Kauffman. 2002. Monitoring and control of European green crab (Carcinus maenas) populations in coastal estuaries of Washington State. Washington Department of Fish and Wildlife, Olympia Washington.Google Scholar
  26. Freeman, M. F. andJ. W. Tukey. 1950. Transformations related to the angular and the square root.Annals of Statistics 21:607–611.CrossRefGoogle Scholar
  27. Glude, J. B. 1955. The effects of temperature and predators on the abundance of the softshell clamMya arenaria in New England.Transactions of the American Fisheries Society 84:13–26.CrossRefGoogle Scholar
  28. Grosholz, E. D. andG. M. Ruiz. 1995. Spread and potential impact of the recently introduced European green crab,Carcinus maenas, in central California.Marine Biology 122:239–247.Google Scholar
  29. Grosholz, E. D. andG. M. Ruiz. 1996. Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crabCarcinus maenas.Biological Conservation 78:59–66.CrossRefGoogle Scholar
  30. Grosholz, E. D., G. M. Ruiz, C. A. Dean, K. A. Shirley, J. L. Maron, andP. G. Connors. 2000. The impacts of a nonindigenous marine predator in a California bay.Ecology 81:1206–1224.CrossRefGoogle Scholar
  31. Guerin, J. L. andW. B. Stickle. 1992. Effects of salinity gradients on the tolerance and bioenergetics of juvenile blue crabs (Callinectes sapidus) from waters of different environmental salinities.Marine Biology 114:391–396.CrossRefGoogle Scholar
  32. Guerin, J. L. andW. B. Stickle. 1995. Effects of cadmium on survival, osmoregulatory ability and bioenergetics of juvenile blue crabsCallinectes sapidus at different salinities.Marine Environmental Research 40:227–246.CrossRefGoogle Scholar
  33. Hansen, M. J., D. Boisclair, S. B. Brandt, S. W. Hewett, J. F. Kitchell, M. C. Lucas, andJ. J. Ney. 1993. Applications of bioenergetics models to fish ecology and management—Where do we go from here.Transactions of the American Fisheries Society 122:1019–1030.CrossRefGoogle Scholar
  34. Hendriks, A. J. 1999. Allometric scaling of rate, age and density parameters in ecological models.Oikos 86:293–310.CrossRefGoogle Scholar
  35. Hewett, S. W. andB. L. Johnson. 1992. Fish bioenergetics model 2: An upgrade of “a generalized bioenergetics model of fish growth for microcomputers”. WIS-SG-92-250, University of Wisconsin Sea Grant, Madison, Wisconsin.Google Scholar
  36. Hidalgo, F. J., P. J. Baron, andJ. M. Orensanz. 2005. A prediction come true: The green crab invades the Patagonian coast.Biological Invasions 7:547–552.CrossRefGoogle Scholar
  37. Holsman, K. K., D. A. Armstrong, D. A. Beauchamp, andJ. L. Ruesink. 2003. The necessity for intertidal foraging by estuarine populations of subadult Dungeness crab,Cancer magister: Evidence from a bioenergetics model.Estuaries 26:1155–1173.Google Scholar
  38. Holsman, K. K., P. S. McDonald, andD. A. Armstrong. 2006. Patterns of intertidal migration and habitat use by subadult Dungeness crab (Cancer magister Dana) in a coastal estuary of the northeastern Pacific.Marine Ecology Progress Series 308:183–195.CrossRefGoogle Scholar
  39. Houlihan, D. F. andA. J. Innes. 1984. The cost of walking in crabs—Aerial and aquatic oxygen consumption during activity of two species of intertidal crab.Comparative Biochemistry and Physiology. A: Comparitive-Physiology 77:325–334.CrossRefGoogle Scholar
  40. Houlihan, D. F. andE. Mathers. 1985. Effects of captivity and exercise on the energetics of locomotion and muscle ofCarcinus maenas (L).Journal of Experimental Marine Biology and Ecology 92:125–142.CrossRefGoogle Scholar
  41. Houlihan, D. F., E. Mathers, andA. J. Elhaj. 1984. Walking performance and aerobic and anaerobic metabolism ofCarcinus maenas (L) in seawater at 15°C.Journal of Experimental Marine Biology and Ecology 74:211–230.CrossRefGoogle Scholar
  42. Houlihan, D. F., C. P. Waring, E. Mathers, andC. Gray. 1990. Protein synthesis and oxygen consumption of the shore crabCarcinus maenas after a meal.Physiological Zoology 63:735–756.Google Scholar
  43. Hunt, C. E. andS. B. Yamada. 2003. Biotic resistance experienced by an invasive crustacean in a temperate estuary.Biological Invasions 5:33–43.CrossRefGoogle Scholar
  44. Hunter, E. andE. Naylor. 1993. Intertidal migration by the shore crabCarcinus maenas.Marine Biology Progress Series 101:131–138.CrossRefGoogle Scholar
  45. Jamieson, G. S., M. G. G. Foreman, J. Y. Cherniawsky, andC. D. Levings. 2002. European green crab (Carcinus maenas) dispersal: The Pacific experience, p. 561–576.In A. J. Paul, E. G. Dawe, R. Elner, G. S. Jamieson, G. H. Kruse, R. S. Otto, B. Sainte-Marie, T. C. Shirley, and D. Woodby (eds.), Crabs in Cold Water Regions: Biology, Management, and Economics. Alaska Sea Grant, University of Alaska Press, Anchorage, Alaska.Google Scholar
  46. Jamieson, G. S., E. D. Grosholz, D. A. Armstrong, andR. W. Elner. 1998. Potential ecological implications from the introduction of the European green crab,Carcinus maenas (L.), to British Columbia, Canada, and Washington, USA.Journal of Natural History 32:1587–1598.CrossRefGoogle Scholar
  47. Jensen, G. C. andM. K. Asplen. 1998. Omnivory in the diet of juvenile Dungeness crab,Cancer magister Dana.Journal of Experimental Marine Biology and Ecology 226:175–182.CrossRefGoogle Scholar
  48. Johannes, R. E. andM. Satomi. 1967. Measuring organic matter retained by aquatic invertebrates.Journal of the Fisheries Research Board of Canada 24:2467–2471.Google Scholar
  49. Kaiser, M. J., R. N. Hughes, andD. G. Reid. 1990. Chelal morphometry, prey-size selection and aggressive competition in green and red forms ofCarcinus maenas (L.).Journal of Experimental Marine Biology and Ecology 140:121–134.CrossRefGoogle Scholar
  50. Kitchell, J. F., D. J. Stewart, andD. Weininger. 1977. Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizosedion vitreum vitreum).Journal of the Fisheries Research Board of Canada 34:1922–1935.Google Scholar
  51. Klein Breteler, W. C. M. 1975. Food consumption, growth and energy metabolism of juvenile shore crabsCarcinus maenas.Netherlands Journal of Sea Research 9:252–272.Google Scholar
  52. Leonard, G. H., M. D. Bertness, andP. O. Yund. 1999. Crab predation, waterborne cues, and inducible defenses in the blue mussel.Mytilus edulis. Ecology 80:1–14.Google Scholar
  53. Mascaro, M. andR. Seed. 2000. Foraging behavior ofCarcinus maenas (L.): Comparisons of size-selective predation on four species of bivalve prey.Journal of Shellfish Research 19:283–291.Google Scholar
  54. McGaw, I. andE. Naylor. 1992. Distribution and rhythmic locomotor patterns of estuarine and open-shore populations ofCarcinus maenas.Journal of the Marine Biological Association of the United Kingdom 72:599–609.Google Scholar
  55. McDonald, P. S., G. C. Jensen, andD. A. Armstrong. 1998. Green crabs and native predators: Possible limitations on the west coast invasion.Journal of Shellfish Research 17:1283.Google Scholar
  56. McDonald, P. S., G. C. Jensen, andD. A. Armstrong. 2000. The potential impacts ofCarcinus maenas introduction on juvenile Dungeness crab,Cancer magister, survival.Journal of Shellfish Research 19:632.Google Scholar
  57. McDonald, P. S., G. C. Jensen, andD. A. Armstrong. 2001. The competitive and predatory impacts of the nonindigenous crabCarcinus maenas (L.) on early benthic phase Dungeness crabCancer magister Dana.Journal of Experimental Marine Biology and Ecology 258:39–54.CrossRefGoogle Scholar
  58. McKinney, R. A., S. M. Glatt, andS. R. Williams 2004. Allometric length-weight relationships for benthic prey of aquatic wildlife in coastal marine habitats.Wildlife Biology 10:241–249.Google Scholar
  59. Naylor, E. 1958. Tidal and diurnal rhythms of locomotor activity inCarcinus maenas (L.).Journal of Experimental Biology 35:602–610.Google Scholar
  60. Neira, C., L. A. Levin, andE. D. Grosholz. 2005. Benthic macrofaunal communities of three sites in San Francisco Bay invaded by hybridSpartina, with comparison to uninvaded habitats.Marine Ecology Progress Series 292:111–126.CrossRefGoogle Scholar
  61. Newell, R. C., M. Ahsnullah, andV. I. Pye. 1972. Aerial and aquatic respiration in the shore crabCarcinus maenas (L.).Journal of Comparative Physiology. Part A. Sensory, Neural, and Behavioral Physiology 43:239–252.Google Scholar
  62. Ney, J. J. 1993. Bioenergetics modeling today—Growing pains on the cutting edge.Transactions of the American Fisheries Society 122:736–748.CrossRefGoogle Scholar
  63. Paul, A. J. andA. Fuji. 1989. Bioenergetics of the Alaskan crabChionoectes bairdi (Decapoda: Majidae).Journal of Crustacean Biology 9:25–36.CrossRefGoogle Scholar
  64. Rasmussen, E. 1973. Systemics and ecology of the Isefjord marine fauna (Denmark).Ophelia 11:3–16.Google Scholar
  65. Reid, D. G., P. Abello, M. J. Kaiser, andC. G. Warman. 1997. Carapace colour, inter-moult duration and the behavioural and physiological ecology of the shore crabCarcinus maenas.Estuarine Coastal and Shelf Science 44:203–211.CrossRefGoogle Scholar
  66. Reise, K. 1978. Experiments on epibenthic predation in the Wadden Sea.Helgolander Wissenschaftliche Meeresuntersuchungen 31:55–101.CrossRefGoogle Scholar
  67. Robertson, R. F., J. Meagor, andE. W. Taylor. 2002. Specific dynamic action in the shore crab,Carcinus maenas (L.), in relation to acclimation temperature and to the onset of the emersion response.Physiological and Biochemical Zoology 75:350–359.CrossRefGoogle Scholar
  68. Rooper, C., D. A. Armstrong, andD. R. Gunderson. 2002. Habitat use by juvenile Dungeness crab within coastal nursery estuaries, p. 609–629.In A. J. Paul, E. G. Dawe, R. Elner, G. S. Jamieson, G. H. Kruse, R. S. Otto, B. Sainte-Marie, T. C. Shirley, and D. Woodby (eds.), Crabs in Cold Water Regions: Biology, Management, and Economics, Alaska Sea Grant, University of Alaska Press, Anchorage, Alaska.Google Scholar
  69. Rovero, F., R. N. Hughes, N. M. Whiteley, andG. Chelazzi. 2000. Estimating the energetic cost of fighting in shore crabs by noninvasive monitoring of heartbeat rate.Animal, Behaviour 59:705–713.CrossRefGoogle Scholar
  70. Sanchez-Salazar, M. E., C. L. Griffiths, andR. Seed. 1987. The effect of size and temperature on the predation of cocklesCerastoderma edule L. by the shore crabCarcinus maenas L.Journal of Experimental Marine Biology and Ecology 111:181–194.CrossRefGoogle Scholar
  71. Sayce, K. andT. Mumford, Jr. 1990. Identifying theSpartina species, p. 9–14.In T. F. Mumford, Jr, P. Peyton, J. R. Sayce, and S. Harbell (eds.), SpartinaWorkshop Record. Washington Sea Grant Program, Seattle, Washington.Google Scholar
  72. Schratzberger, M. andR. M. Warwick. 1999. Impact of predation and sediment disturbance byCarcinus maenas (L.) on free-living nematode community structure.Journal of Experimental Marine Biology and Ecology 235:255–271.CrossRefGoogle Scholar
  73. Seeley, R. H. 1986. Intense natural selection caused a rapid morphological transition in a living marine snailLittorina obtu sata.Proceedings of the National Academy of Sciences of the United States of America 83:6897–6901.CrossRefGoogle Scholar
  74. Simberloff, D. andB. von Holle. 1999. Positive interactions of nonindigenous species: Invasional meltdown?Biological Invasions 1:21–32.CrossRefGoogle Scholar
  75. Smallegange, I., J. van der Meer, andR. Kurvers. 2006. Disentangling interference competition from exploitative competition in a crab-bivalve system using a novel experimental approach.Oikos 113:157–167.CrossRefGoogle Scholar
  76. Styrishave, B., A. Aagaard, andO. Andersen. 1999. In situ studies on physiology and behavior in two color forms of the shore crabCarcinus maenas in relation to season.Marine Ecology Progress Series 189:221–231.CrossRefGoogle Scholar
  77. Styrishave, B. andO. Andersen. 2000. Seasonal variations in hepatopancreas fatty acid profiles of two color forms of shore crabs,Carcinus maenas. Marine Biology 137:415–422.CrossRefGoogle Scholar
  78. Thiel, M. andT. Dernedde. 1994. Recruitment of shore crabsCarcinus maenas on tidal flats: Mussel clumps as an important refuge for juveniles.Helgolaender Meeresuntersuchungen 48:321–332.CrossRefGoogle Scholar
  79. Thornton, K. W. andA. S. Lessem. 1978. A temperature algorithm for modifying biological rates.Transactions of the American Fisheries Society 107:284–287.CrossRefGoogle Scholar
  80. Wallace, J. C. 1972. Activity and metabolic rate in shore crab,Carcinus maenas (L.).Comparative Biochemistry and Physiology 41:523–533.CrossRefGoogle Scholar
  81. Wallace, J. C. 1973. Feeding, starvation and metabolic rate in the shore crabCarcinus maenas.Marine Biology 20:277–281.CrossRefGoogle Scholar
  82. Walton, W. C., C. MacKinnon, L. F. Rodriguez, C. Proctor, andG. A. Ruiz. 2002. Effect of an invasive crab upon a marine fishery: Green crab,Carcinus maenas, predation upon a venerid clam,Katelysia scalarina, in Tasmania (Australia).Journal of Experimental Marine Biology and Ecology 272:171–189.CrossRefGoogle Scholar
  83. Warner, G. F. 1977. The Biology of Crabs. Van Nostrand, New York.Google Scholar
  84. Wheatly, M. G. 1981. The provision of oxygen to developing eggs by female shore crabs (Carcinus maenas).Journal of the Marine Biological Association of the United Kingdom 61:117–128.Google Scholar
  85. Winberg, G. G. 1956. Rate of Metabolism and Food Requirements of Fishes. Belorussian University, Minsk, Belarus.Google Scholar
  86. Yamada, S. B. 2001. Global Invader: The European Green Crab. Oregon Sea Grant, Corvallis, Oregon.Google Scholar
  87. Yamada, S. B., B. R. Dumbauld, A. Kalin, C. E. Hunt, R. Figlar-Barnes, andA. Randall. 2005. Growth and persistence of a recent invaderCarcinus maenas in estuaries of the northeastern Pacific.Biological Invasions 7:309–321.CrossRefGoogle Scholar
  88. Zar, J. H. 1984. Biostatistical Analysis, 2nd edition. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  89. Zipperer, V. T. 1996. Ecological effects of the introduced cordgrass,Spartina alterniflora, on the benthic community structure of Willapa Bay, Washington. M.S. Thesis, University of Washington, Seattle, Washington.Google Scholar

Sources of Unpublished Materials

  1. Holsman, K. K. unpublished data. School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, Washington 98195-5020.Google Scholar
  2. Jensen, G. C. unpublished data. School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, Washington 98195-5020.Google Scholar

Copyright information

© Estuarine Research Federation 2006

Authors and Affiliations

  • P. Sean McDonald
    • 1
  • Kirstin K. Holsman
    • 2
  • David A. Beauchamp
    • 1
  • Brett R. Dumbauld
    • 3
  • David A. Armstrong
    • 1
  1. 1.School of Aquatic and Fishery SciencesUniversity of WashingtonSeattle
  2. 2.People for Puget SoundSeattle
  3. 3.Agricultural Research Service, Hatfield Marine Science CenterU.S. Department of AgricultureNewport

Personalised recommendations