Il Nuovo Cimento A (1965-1970)

, Volume 107, Issue 9, pp 1715–1722 | Cite as

Gravitational field of a superconducting global string

  • J. R. Morris


The Newtonian gravitational field of a superconducting global cosmic string is investigated using the weak-field approximation, and is found to receive contributions from the global string field, the condensate field, and the electromagnetic fields. For certain parameter ranges the gravitational field in the region exterior to the string may be everywhere repulsive, everywhere attractive, or repulsive in some regions and attractive in others. For a neutral superconducting global string there can exist a particular current for which the gravitational field of the superconducting global string approximately coincides with that of a Grand Unified Theory (GUT) scale Weyl string, and, as pointed out by Widom, Srivastava, and Redington, observed asymptotic galactic rotation velocities can be roughly explained without the introduction of any further dark-matter hypothesis.

PACS 11.30.Qc

Spontaneous symmetry breaking 

PACS 11.17

Theories of strings and other extended objects 

PACS 98.80.Cq

Particle-theory models of the early universe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Witten:Nucl. Phys. B,249, 557 (1985).CrossRefADSGoogle Scholar
  2. [2]
    D. N. Spergel, T. Piran andJ. Goodman:Nucl. Phys. B,291, 847 (1987).MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    M. Aryal, A. Vilenkin andT. Vachaspati:Phys. Lett. B,194, 25 (1987).MathSciNetCrossRefADSMATHGoogle Scholar
  4. [4]
    H. B. Nielsen andP. Olesen:Nucl. Phys. B,61, 45 (1973).CrossRefADSGoogle Scholar
  5. [5]
    A. Vilenkin andA. E. Everett:Phys. Rev. Lett.,48, 1867 (1982).CrossRefADSGoogle Scholar
  6. [6]
    A. Vilenkin:Phys. Rev. D,23, 852 (1981).CrossRefADSGoogle Scholar
  7. [7]
    A. Vilenkin:Phys. Rep.,121, 263 (1985).MathSciNetCrossRefADSMATHGoogle Scholar
  8. [8]
    D. Garfinkle:Phys. Rev. D,32, 1323 (1985).MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    M. E. Ortiz andF. Ruiz-Ruiz: inThe Formation and Evolution of Cosmic Strings, edited byG. Gibbons, S. Hawking andT. Vachaspati (Cambridge University Press, Cambridge, 1990).Google Scholar
  10. [10]
    B. Linet:Class. Quantum Grav.,6, 435 (1989).MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    C. H. Lee:Nuovo Cimento B,105, 875 (1990).CrossRefADSGoogle Scholar
  12. [12]
    P. Peter andD. Puy:Phys. Rev. D,48, 5546 (1993).CrossRefADSGoogle Scholar
  13. [13]
    O. F. Dayi, H. J. W. Muller-Kirsten, A. V. Shurgaia andD. H. Tchrakian:Phys. Lett. B,286, 234 (1992).MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    A. Widom, Y. N. Srivastava andN. Redington:Phys. Rev. D,48, 554 (1993).CrossRefADSGoogle Scholar
  15. [15]
    We require (ϱVR, ϱVF)|R=η,F=0=(0,0) and (ϱ2 VR 22 VF 2R=η,F=0>(0,0)..Google Scholar

Copyright information

© Società Italiana di Fisica 1994

Authors and Affiliations

  • J. R. Morris
    • 1
  1. 1.Department of Chemistry/Physics/AstronomyIndiana University NorthwestGaryUSA

Personalised recommendations