Skip to main content
Log in

Gravitational field of a superconducting global string

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The Newtonian gravitational field of a superconducting global cosmic string is investigated using the weak-field approximation, and is found to receive contributions from the global string field, the condensate field, and the electromagnetic fields. For certain parameter ranges the gravitational field in the region exterior to the string may be everywhere repulsive, everywhere attractive, or repulsive in some regions and attractive in others. For a neutral superconducting global string there can exist a particular current for which the gravitational field of the superconducting global string approximately coincides with that of a Grand Unified Theory (GUT) scale Weyl string, and, as pointed out by Widom, Srivastava, and Redington, observed asymptotic galactic rotation velocities can be roughly explained without the introduction of any further dark-matter hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten:Nucl. Phys. B,249, 557 (1985).

    Article  ADS  Google Scholar 

  2. D. N. Spergel, T. Piran andJ. Goodman:Nucl. Phys. B,291, 847 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Aryal, A. Vilenkin andT. Vachaspati:Phys. Lett. B,194, 25 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. H. B. Nielsen andP. Olesen:Nucl. Phys. B,61, 45 (1973).

    Article  ADS  Google Scholar 

  5. A. Vilenkin andA. E. Everett:Phys. Rev. Lett.,48, 1867 (1982).

    Article  ADS  Google Scholar 

  6. A. Vilenkin:Phys. Rev. D,23, 852 (1981).

    Article  ADS  Google Scholar 

  7. A. Vilenkin:Phys. Rep.,121, 263 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. D. Garfinkle:Phys. Rev. D,32, 1323 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  9. M. E. Ortiz andF. Ruiz-Ruiz: inThe Formation and Evolution of Cosmic Strings, edited byG. Gibbons, S. Hawking andT. Vachaspati (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  10. B. Linet:Class. Quantum Grav.,6, 435 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  11. C. H. Lee:Nuovo Cimento B,105, 875 (1990).

    Article  ADS  Google Scholar 

  12. P. Peter andD. Puy:Phys. Rev. D,48, 5546 (1993).

    Article  ADS  Google Scholar 

  13. O. F. Dayi, H. J. W. Muller-Kirsten, A. V. Shurgaia andD. H. Tchrakian:Phys. Lett. B,286, 234 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Widom, Y. N. Srivastava andN. Redington:Phys. Rev. D,48, 554 (1993).

    Article  ADS  Google Scholar 

  15. We require (ϱVR, ϱVF)| R=η,F=0=(0,0) and (ϱ2 VR 22 VF 2R=η,F=0>(0,0)..

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author of this paper has agreed to not receive the proofs for correction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, J.R. Gravitational field of a superconducting global string. Nuov Cim A 107, 1715–1722 (1994). https://doi.org/10.1007/BF02780703

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02780703

PACS 11.30.Qc

PACS 11.17

PACS 98.80.Cq

Navigation