Molecular Neurobiology

, Volume 7, Issue 1, pp 23–48 | Cite as

Genomic damage and its repair in young and aging brain

  • Kalluri Subba Rao


A brief review of the available information concerning age-related genomic (DNA) damage and its repair, with special reference to brain tissue, is presented. The usefulness of examining the validity of DNA-damage and repair hypothesis of aging in a postmitotic cell like neuron is emphasized. The limited number of reports that exist on brain seem to overwhelmingly support the accumulation of DNA damage with age. However, results regarding the age-dependent decline in DNA-repair capacity are conflicting and divided. The possible reasons for these discrepancies are discussed in light of the gathering evidence, including some human genetic disorders, to indicate how complex is the DNA-repair system in higher animals. It is suggested that assessment of repair potential of neurons with respect to a specific damage in a specific gene might yield more definitive answers about the DNA-repair process and its role in aging.

Index Entries

DNA damage DNA-repair brain aging genetic disorders 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed F. E. and Setlow R. B. (1978) Excision repair in Ataxia Telangiectasia, Fanconi's Anemia, Cockayne Syndrome and Bloom's syndrome after treatment with ultraviolet radiation andN-acetyl-2-acetylaminofluorine.Biochim. Biophys. Acta 521, 805–817.PubMedGoogle Scholar
  2. Alexander P. (1967) The role of DNA lesions in processes leading to aging in mice.Symp. Soc. Exp. Biol. 21, 29–50.PubMedGoogle Scholar
  3. Ames B. N. (1983) Dietary carcinogens and anticarcinogens.Science 221, 1256–1264.PubMedGoogle Scholar
  4. Balazs R. and Brookshank B. W. (1985) Neurochemical approaches to the pathogenesis of Down Syndrome.J. Ment. Defic. Res. 29, 1–14.PubMedGoogle Scholar
  5. Barrows L. R. and Magee P. N. (1982) Nonenzymatic methylation of DNA by S-adenosyl methionine in vitro.Carcinogenesis 3, 349–351.PubMedGoogle Scholar
  6. Bergtold D. S. and Lett J. T. (1985) Alterations in chromosomal DNA and aging: An overview, inMolecular Biology of Aging: Gene Stability and Gene Expression (Sohol R. S., Birnbaum L. S., and Cutler R. G., eds.), Raven, New York, pp. 23–26.Google Scholar
  7. Berkowitz E. M., Sanborn A. C., and Vaughan D. W. (1983) Chromatin structure in neuronal and neuroglial cell nuclei as a function of age.J. Neurochem. 41, 516–523.PubMedGoogle Scholar
  8. Bernstein C. and Bernstein H. (1991)Aging, Sex and DNA-Repair. Academic, San Diego, CA.Google Scholar
  9. Bilen J., Ittel M. E., Nidergang C., Okazaki H., and Mandel P. (1981) Poly (Adenosine diphosphate ribose) polymerase activity in neuronal and glial nuclei from bovine cerebrum.Neurochem. Res. 6, 1253–1263.PubMedGoogle Scholar
  10. Bohr V. A. and Wassermann K. (1988) DNA-repair at the level of the gene.Trends Biochem. Sci. 13, 429–433.PubMedGoogle Scholar
  11. Bohr V. A., Evans M. K., and Albert J. F., Jr. (1989) DNA repair and its pathogenic implications.Laboratory Investigation 61, 143–161.PubMedGoogle Scholar
  12. Brown T. C. and Jiricny J. (1987) A specific mismatch repair event protects mammalian cells from loss of 5-methyl cytosine.Cell 50, 945–950.PubMedGoogle Scholar
  13. Chao C. K. C., Huang S. L. and Lin-Chao S. (1991) Ca2+-mediated inhibition of a nuclear protein that recognizes UV-damaged DNA and is constitutively overexpressed in resistant human cells: DNA-binding assay.Nucl. Acids Res. 19, 6413–6418.PubMedGoogle Scholar
  14. Chaturvedi M. M. and Kanungo M. S. (1985) analysis of conformation and function of the chromatin of the brain of young and old rats.Mol. Biol. Rep. 10, 215–219.PubMedGoogle Scholar
  15. Chaudhari N. and Hahn W. A. (1983) Genetic expression in the Developing Brain.Science 220, 924–928.PubMedGoogle Scholar
  16. Chetsanga C. J., Tuttle M., Jacobini A., and Johnson C. (1977) Age associated structural alterations in senescent mouse brain DNA.Biochem. Biophys. Acta 474, 180–187.PubMedGoogle Scholar
  17. Chikaraishi D. M. (1979) Complexity of cytoplasmic polyadenylated and non polyadenylated rat brain ribonucleic acids.Biochemistry 18, 3249–3256.PubMedGoogle Scholar
  18. Cleaver J. E. and Karentz D. (1986) DNA-repair in man: Regulation by a multigene family and association with human disease.BioEssays 6, 122–127.Google Scholar
  19. Cole R. (1970) Light induced cross-linking of DNA in the presence of a furocoumarin (Psoralen) studies with phage λ,E. coli and mouse leukemia cells.Biochim. Biophys. Acta 217, 30–39.PubMedGoogle Scholar
  20. Collins A., Johnson R. T., and Boyle J. M., eds (1987) Molecular biology of DNA-repair.J. Cell. Science, Supplement 6, The Company of Biologists Limited, Cambridge, UK.Google Scholar
  21. Cutler R. G. (1991) Human longevity and aging: possible role of reactive oxygen species.Ann. NY Acad. Sci. 621, 1–28.PubMedGoogle Scholar
  22. Delabar J. M., Sinet P. M., Chadefaux B, Nichole A., Gegonne A., Stehelin D., Fridlansky F., Crean Goldberg N., Turlsan C., and de Grouchy J. (1987) Submicroscopic duplication of chromosome 21 and trisomy 21 phenotype (Down Syndrome).Hum. Genet. 76, 225–229.PubMedGoogle Scholar
  23. De Sousa J., DeBoni U., and Cinader B. (1986) Agerelated decrease in ultraviolet induced DNA-repair in neurons but not in lymph node cells of inbred mice.Mech. Aging Dev. 36, 1–12.PubMedGoogle Scholar
  24. Dobbing J. (1971) Undernutrition and the developing brain: The use of animal models to elucidate the human problem, inChemistry and Brain Development (Paoletti R. and Davision A. N., eds.), Plenum, New York, London, pp. 399–412.Google Scholar
  25. Eberwine J., Yeh H., Miyashiro K., Cao Y., Nair S., Finnel R., Zettel M., and Coleman P. (1992) Analysis of gene expression in single live neuron.Proc. Natl. Acad. Sci. USA 89, 3010–3014.PubMedGoogle Scholar
  26. Fischer E., Keijzer W., Thielmann H. W., Popando O., Bohvert E., Edler L., Jung, E. G., and Bootsma, D. (1985) A ninth complementation group in Xeroderma pigmentosum, XP1.Mutation Res. 145, 217–225.PubMedGoogle Scholar
  27. Friedberg E. C. (1985)DNA-Repair, Freeman and Company, New York.Google Scholar
  28. Friedberg E. C., ed. (1990) The enzymology of DNA-repair.Mutation Res. 236, 145–312.Google Scholar
  29. Friedberg E. C. (1991) Eukaryotic DNA-repair: Glimpses through the yeastSaccharomyces Cerevisiae.BioEssays 13, 295–302.PubMedGoogle Scholar
  30. Fu C. S., Harris S. B., Wilhelm P., and Walford R. L. (1991) Lack of effect of age on dietary restriction on DNA single stranded breaks in brain, liver and kidney of (C3H×C57BL/10) F1 mice.J. Gerontol. 46, B78–80.PubMedGoogle Scholar
  31. Gensler H. L. (1981) Low levels of UV induced UDS in post-mitotic brain cells in hamsters: Possible relevance to aging.Exp. Gerontol. 16, 199–207.PubMedGoogle Scholar
  32. Gensler H. L. and Bernstein H. (1981) DNA-damage as the primary cause of aging.Q. Rev. Biol. 56, 279–303.PubMedGoogle Scholar
  33. Hanawalt P. C. (1987) On the role of DNA damage and repair processes in aging: Evidence for and against, inModern Biological Theories of Aging (Warner H. R. Butler R. N., Sprott R. L., and Schneider E. L., eds.), Raven, New York, pp. 183–198.Google Scholar
  34. Hanawalt P. C., Cooper P. K., Ganesan A. K., and Smith C. A. (1979) DNA-repair in bacteria and mammalian cells.Ann. Rev. Biochem. 48, 783–836.PubMedGoogle Scholar
  35. Hanawalt P. C. (1989) Concepts and models for DNA repair: FromEscherichia coli to mammalian cells.Environ. Mol. Mutagen. 14, 90–98.PubMedGoogle Scholar
  36. Hanawalt P. C., Gee P., Ho L., Hsu R. K., and Kane C. J. M. (1992) Genomic heterogeneity of DNA repair.Ann. NY Acad. Sci. in press.Google Scholar
  37. Harman D. (1981) The aging process.Proc. Natl. Acad. Sci. USA 78, 7124–7128.PubMedGoogle Scholar
  38. Hariharan P. V. and Cerutti P. A. (1977) Formation of products of the 5,6-dihydroxydihydrothymine type by ultraviolet light in hela cells.Biochemistry 16, 271–275.Google Scholar
  39. Hart R. W. and Setlow R. B. (1974) Correlation between deoxyribonucleic acid excision repair and life span in a number of mammalian species.Proc. Natl. Acad. Sci. USA 71, 2169–2173.PubMedGoogle Scholar
  40. Hartnell J. M., Storrie M. C., and Mooradian, D. (1989) The tissue specificity of the age related changes in alkali induced DNA unwinding.Mutation Res. 219, 187–192.PubMedGoogle Scholar
  41. Hartwig A. and Beyersmann D. (1989) Comutagenicity and inhibition of DNA repair by metal ions in mammalian cells.Biol. Trace Elem. Res. 21, 359–365.PubMedGoogle Scholar
  42. Haynes R. H. (1988) Biological context of DNA repair, inMechanisms and Consequences of DNA Damage Processing (Friedberg E. C. and Hanawalt P. C., eds.), Liss, New York, pp. 577–584.Google Scholar
  43. Hayflick, L. (1980) Recent advances in the cell biology of aging.Mech. Aging Dev. 14, 59–79.PubMedGoogle Scholar
  44. Healy J. W., Stollar D., Simon M. I., and Levine L. (1963) Characterization of phosphodiesterase from lamb brain.Arch. Biochem. Biophys. 103, 461–468.PubMedGoogle Scholar
  45. Hennecke F., Kolmar H., Brundl K., and Fritz H. J. (1991) The Vsr gene product ofE. coli K-12 is strand and sequence specific DNA mismatch endonuclease.Nature 353, 776–778.PubMedGoogle Scholar
  46. Heywood L. A. and Burke J. F. (1990) Mismatch repair in mammalian cells.BioEssays 12, 473–477.PubMedGoogle Scholar
  47. Hoy C. A., Thompson L. H., Mooney C. L., and Salazar E. P. (1985) Defective DNA-cross link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents.Cancer Res. 45, 1737–1743.PubMedGoogle Scholar
  48. Hubscher U., Kuenzle C. C., and Spadari S. (1979) Functional roles of DNA-polymerase β and γ.Proc. Natl. Acad. Sci. USA 76, 2316–2320.PubMedGoogle Scholar
  49. Inoue I. and Kato T. (1980) Nuclear DNA-ligase and its action on chromatin DNA in neuronal, glial and liver nuclei isolated from adult guinea pigs.J. Neurochem. 34, 1574–1583.PubMedGoogle Scholar
  50. Ivanov V. A., Goziev A. I., and Tretyak T. M. (1983) Exodeoxyribonuclease from rat brain specific for single stranded DNA.Eur. J. Biochem. 137, 517–522.PubMedGoogle Scholar
  51. Ivanov V. A., Tretyak T. M., and Afonin Y. N. (1988) Excision of apurinic and/or apyrimidinic sites from DNA by nucleolytical enzymes from rat brain.Eur. J. Biochem. 172, 155–159.PubMedGoogle Scholar
  52. Iyer V. N. and Szybalski W. (1963) A molecular mechanism of mitomycin action: Linking of complimentary DNA strands.Proc. Natl. Acad. Sci. USA 50, 355.PubMedGoogle Scholar
  53. Jensen L. and Linn S. (1988) A reduced rate of bulky DNA adduct removal is coincident with differentiation of human neuroblastoma cells induced by nerve growth factor.Mol. Cell. Biol. 8, 3964–3968.PubMedGoogle Scholar
  54. Kanungo M. S. and Thakur M. K. (1979) Modulation of acetylation of histones and transcription of chromatin by butyric acid and 17β-estradiol in the brain of rats of various ages.Biochem. Biophys. Res. Commun. 87, 266–271.PubMedGoogle Scholar
  55. Kasai H., Crain P. F., Kuchino Y., Nishimura S., Ootsuyama A., and Tanooka H. (1986) Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair.Carcinogenesis 7, 1849–1851.PubMedGoogle Scholar
  56. Kirkwood T. B. L., and Holliday R. (1969) The evolution of aging and longevity.Proc. R. Soc. London,B205, 531–546.Google Scholar
  57. Korr H. (1980)Advances in Anatomical and Embryological Cell Biology, vol. 61: Proliferation of Different Cell Types in the Brain. Springer-Verlag, Berlin, pp. 5–16.Google Scholar
  58. Korr H. and Schultz B. (1989) Unscheduled DNA-synthesis in various types of cells of the mouse brainin vivo.Exp. Brain Res. 74, 573–578.PubMedGoogle Scholar
  59. Kornberg R. D. (1977) Structure of chromatin.Ann. Rev. Biochem. 46, 931–954.PubMedGoogle Scholar
  60. Kittler L and Lober G. (1977) Photochemistry of nucleic acids.Photobiol. Rev. 2, 39.Google Scholar
  61. Krokan H., Haugen A., Myrnes B., and Guddal P. H. (1983) Repair of premutagenic DNA lesions in human foetal tissues: Evidence for low levels of O6-methylguanine-DNA-methyl transferase and uracil DNA-glycosylase activity in some tissues.Carcinogenesis 4, 1559–1564.PubMedGoogle Scholar
  62. Kuenzle C. C. (1985) Enzymology of DNA-replication and repair in the brain.Brain Res. Rev. 10, 231–245.Google Scholar
  63. Kurtz O. I. and Sinex F. M. (1967) Age related differences in the association of brain DNA and nuclear proteins.Biochem. Biophys. Acta 145, 840–842.PubMedGoogle Scholar
  64. Lai L. W., Ducore J. M. and Rosensteim B. S. (1987) DNA-protein crosslinking in normal human skin fibroblasts exposed to solar ultraviolet wave-lengths.Photochem. Photobiol. 46, 143–146.PubMedGoogle Scholar
  65. Lambert M. W., Fenkart D., and Clarke M. (1988) Two DNA endonuclease activities from normal human and xeroderma pigmentosum chromatin active on psoralen plus ultraviolet light treated DNA.Mutation Res. 193, 65–73.PubMedGoogle Scholar
  66. Lehmann A. R., Kirk-Bell S., Ariett C. F., Harcourt S. A., De Weerd-Kastelein E. A., Keijzer W., and Hall-Smith P. (1977) Repair of UV-damage in a variety of human fibroblast cell strains.Cancer Res. 37, 904–910.PubMedGoogle Scholar
  67. Lesko S. A. (1982) DNA-protein and DNA interstrand cross-links induced in isolated chromatin by hydrogen peroxide and ferrous EDTA chelates.Biochemistry 21, 5010–5015.PubMedGoogle Scholar
  68. Lindhal T. (1977) DNA repair enzymes acting on spontaneous lesions in DNA, inDNA-Repair Processes (Nichols W. W. and Murphy D. G., eds.), Symposia Specialists, Miami, FL, pp. 225–240.Google Scholar
  69. Lindahl T. (1979) DNA-glycosylases, endonucleases or apurinic/apyrimidinic sites and base excision repair.Prog. Nucl. Acid. Res. Mol. Biol. 22, 135–188.Google Scholar
  70. Lindahl T. and Karlstrom O. (1973) Heat induced depyrimidination of deoxyribonucleic acid in neutral solution.Biochemistry 12, 5151–5154.PubMedGoogle Scholar
  71. Lindahl T. and Nyberg B. (1972) Rate of depurination of native DNA.Biochemistry 11, 3610–3618.PubMedGoogle Scholar
  72. Lindahl T. and Nyberg B. (1974) Heat induced deamination of cytosine residues in deoxyribonucleic acid.Biochemistry 13, 3405–3410.PubMedGoogle Scholar
  73. Linn, S. (1982) Nucleases involved in DNA-repair inNucleases (Linn S. and Roberts R. J., eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 59–83.Google Scholar
  74. Lippke J. A., Gordon L. K., Brash D. E. and Haseltine W. A. (1981) Distribution of UV light induced damage in a defined sequence of human DNA: Detection of alkaline-sensitive lesions at pyrimidine nucleoside cytidine sequences.Proc. Natl. Acad. Sci. USA 78, 3388–3392.PubMedGoogle Scholar
  75. Loeb L. A. and Preston B. D. (1986) Mutagenesis by apurinic/apyrimidinic sites.Ann. Rev. Genet. 20, 201–230.PubMedGoogle Scholar
  76. Madhani H. D., Bohr, V. A., and Hanawalt P. C. (1986) Differential DNA repair in a transcriptionally active and inactive proto-oncogenec: c-abl and c-mos.Cell 45, 417–423.PubMedGoogle Scholar
  77. Martin G. M. (1978) Genetic syndromes in man with potential relevance to the pathobiology of aging, inGenetic Effects on Aging. Birth Defects, Original Article Series (Bergsma D. and Harrison D. E., eds.), The National Foundation March of Dimes, New York, pp. 5–39.Google Scholar
  78. Massie H. R., Samis H. V., and Baird M. B. (1972) The kinetics of degradation of DNA and RNA by H2O2.Biochem. Biophys. Acta 272, 539–548.PubMedGoogle Scholar
  79. Mayne L. V. and Lehmann A. R. (1982) Failure of RNA synthesis to recover after UV irradiation. An early defect in cells from individuals with cockayne's syndrome and xeroderma pigmentosum.Cancer Res. 42, 1473–1478.PubMedGoogle Scholar
  80. Mayne L. V., Mullenders L. H. F., and Van Zuland, Z. (1988) Cockayne's syndrome: A UV sensitive disorder with defect in the repair of transcribing DNA but normal overall excision repair, inMechanisms and Consequences of DNA Damage Processing (Friedberg E. C. and Hanawalt P. C., eds.), Alan R. Liss, New York, pp. 349–359.Google Scholar
  81. Mckinnon P. J. (1987)Ataxia Telangiectasia. An inherited disorder of ionizing radiations sensitivity in man.Human Genet. 75, 197.Google Scholar
  82. Mellon I., Spivak G., and Hanawalt P. C. (1987) Selective removal of transcription blocking DNA damage from the transcribed strand of the mammalian DHFR gene.Cell 51, 241–249.PubMedGoogle Scholar
  83. Mellon I. and Hanawalt P. C. (1989) Induction of theE. coli lactose operon selectively increases repair of its transcribed DNA strand.Nature 342, 95–98.PubMedGoogle Scholar
  84. Miller D. L., Reese J. A. and Frazier M. E. (1989) Single strand DNA breaks in human leukocytes induced by ultrasoundin vitro.Ultrasound Med. & Biol. 15, 765–771.Google Scholar
  85. Mori N. and Goto S. (1982) Estimation of the single stranded region in the nuclear DNA of mouse tissues during aging with special reference to the brain.Arch. Gerontol. Geriatr. 1, 143–150.PubMedGoogle Scholar
  86. Mullaart E., Lohman, P. H. M., Berends F. and Vijg J. (1990) DNA damage metabolism and aging.Mutation Res. 237, 189–210.PubMedGoogle Scholar
  87. Mullart E., Boerrigter M. E. T. I., Boer G. J., and Vijg J. (1990) Spontaneous DNA-breaks in the rat brain during development and aging.Mutation Res. 237, 9–15.Google Scholar
  88. Murthy M. R., Barucha A. D., Jacob J., and Roux-Murthy P. K. (1976) Molecular biological models in geriatric neurobiology, inNeuropsychopharmacology (Deniker P., Radowco-Thomas C., and Villeneuve A., eds.), Pergamon, Oxford, UK, pp. 1615–1622.Google Scholar
  89. Nakanishi K., Shima A., Fukuda M. and Fujita S. (1979) Age associated increase of single-stranded regions in the DNA of mouse brain and liver cells.Mech. Aging Dev. 10, 273–281.PubMedGoogle Scholar
  90. Niedermuller H. (1985) DNA-repair during aging, inMolecular Biology of Aging. Gene Stability and Gene Expression (Sohal R. S., Birnbaum L. S., and Cutler R. G., eds.), Raven, New York, pp. 173–193.Google Scholar
  91. Ono T. and Okada S. (1978) Does the capacity to rejoin radiation induced DNA-breaks decline in senescent mice?Int. J. Radiat. Biol. 33, 403–407.Google Scholar
  92. Ono T., Okada S., and Sugahara T. (1976) Comparative studies of DNA size in various tissues of mice during the aging process.Exp. Gerontol. 11, 127–132.PubMedGoogle Scholar
  93. Peak M. J., Peak J. G., and Jones C. A. (1985) Different (direct & indirect) mechanisms for the induction of DNA-protein crosslinks in human cells by far and near ultraviolet radiations (290 & 405 nm).Photochem. Photobiol. 42, 141–146.PubMedGoogle Scholar
  94. Price A. and Lindahl T. (1991) Enzymatic release of 5′-terminal deoxyribose phosphate residues from damaged DNA in human cells.Biochemistry 30, 8631–8637.PubMedGoogle Scholar
  95. Price G. B., Modak S. P., and Makinodan T. (1971) Age associated changes in the DNA of mouse tissue.Science 171, 917–920.PubMedGoogle Scholar
  96. Rajagopal S. V. and Subba Rao K. (1992) Purification and properties of a deoxyribonuclease (acid DNase) from rat brain.Biochem. Arch. 8, 135–142.Google Scholar
  97. Randerath E., Avitts T. A., Reddy M. V., Miller R. H., Everson, R. B. and Randerath K. (1986) Comparative32P-analysis of cigarette smoke induced DNA damage in human tissues and mouse skin.Cancer Res. 46, 5869–5877.PubMedGoogle Scholar
  98. Richter G., Park J. W., and Ames B. N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive.Proc. Natl. Acad. Sci. USA 85, 6465–6467.PubMedGoogle Scholar
  99. Rupert C. S. (1975) Enzymatic photoreactivation: Overview, inMolecular Mechanisms for Repair of DNA (Hanawalt P. C. and Setlow R. B., eds.), Plenum, New York, pp. 73–87.Google Scholar
  100. Rydberg B. and Lindahl T. (1982) Nonenzymatic methylation of DNA by intracellular methyl group donorS-adenosyl methionine is a potentially mutagenic reaction.Embo. J. 1, 211–216.PubMedGoogle Scholar
  101. Sancar A. and Sancar G. B. (1988) DNA-repair enzymes.Ann. Rev. Biochem. 57, 29–67.PubMedGoogle Scholar
  102. Satoh M. S. and Lindahl T. (1992) Role of poly(ADP-ribose) formation in DNA repair.Nature 356, 356–358.PubMedGoogle Scholar
  103. Saul R. L. and Ames B. N. (1985) Background levels of DNA damage in population, inMechanisms of DNA Damage and Repair (Simic M., Grossman L., and Upton A., eds.) Plenum, New York, pp. 529–536.Google Scholar
  104. Saul R. L., Gee P., and Ames B. N. (1987) Free radicals, DNA-damage and aging, inModern Biological Theories of Aging (Warner H. R., Butler R. N., Sprott R. L., and Schneider, E. L., eds.), Raven, New York, pp. 113–129.Google Scholar
  105. Schapper R. M. and Loeb L. A. (1981) Depurination causes mutations in SOS-induced cells.Proc. Natl. Acad. Sci. USA 78, 1773–1777.Google Scholar
  106. Schmickel R. D., Chu E. H. Y., Trosko J. E., and Chang C. C. (1977) Cockayne syndrome: A cellular sensitivity to ultraviolet light.Pediatrics 60, 135–139.PubMedGoogle Scholar
  107. Shibutani S., Takeshita M. and Grollmann A. P. (1991) Insertion of specific bases during DNA synthesis past the oxidation. Damaged Base 8-oxod G. Nature349, 431–434.PubMedGoogle Scholar
  108. Sedgwick S. G. (1986) Stability and change through DNA-repair, inAccuracy in Molecular Processes: Its Control and Relevance to Living Systems (Kirkwood T. B. L., Rosenberger R. F., and Galas D. S., eds.), Chapan and Hall, London, pp. 233–289.Google Scholar
  109. Su C. M., Brash D. E., Turturro A. and Hart R. W. (1984) Longevity dependent organ specific accumulation of DNA-damage in the closely related urine species.Mech. Aging Dev. 27, 239–247.PubMedGoogle Scholar
  110. Subba Rao K. (1990) DNA-repair in developing and aging brain.Proc. Indian Natl. Sci. Acad. B56, 141–150.Google Scholar
  111. Subba Rao K. V. and Subba Rao K. (1982) Changes in DNA, RNA, protein and the activities of acid and alkaline DNases in grey and white matter regions of aging rat brain.Mech. Aging Dev. 18, 225–238.Google Scholar
  112. Subba Rao K. V. and Subba Rao K. (1984) Increased DNA-polymerase β activity in different regions of aging rat brain.Biochem. Intl. 9, 391–397.Google Scholar
  113. Subba Rao K., Martin G. M., and Loeb L. A. (1985) Fidelity of DNA-polymerase-β in neurons from young and very aged mice.J. Neurochem. 45, 1273–1278.PubMedGoogle Scholar
  114. Subba Rao K., Venugopal J., and Ramesh Kumar P. (1992) Alterations in chromatin structure and transcriptional activity in aging rat brain, inRecent Advances in Physiological Sciences (Manchanda S. K., ed.), Macmillan India Limited, New Delhi, pp. 425–431.Google Scholar
  115. Subrahmanyam K. and Subba Rao K. (1991) Ultraviolet light induced unscheduled DNA-synthesis in isolated neurons of rat brain of different ages.Mech. Aging Dev. 57, 283–291.PubMedGoogle Scholar
  116. Sung S. C. (1968) Deoxyribonucleases from rat brain.J. Neurochem. 15, 477–481.PubMedGoogle Scholar
  117. Szilard L. (1959) On the nature of the aging process.Proc. Natl. Acad. Sci. USA 45, 30–45.PubMedGoogle Scholar
  118. Tan B. H., Bencsath F. A., and Gaubatz J. W. (1990) Steady state levels of 7-methylguanine increase in nuclear DNA of postmitotic mouse tissues during aging.Mutation Res. 237 229–238.PubMedGoogle Scholar
  119. Thompson L. H. (1989) Somatic cell genetics approach to dissecting mammalian DNA repair.Environ. Mol. Mutagen. 14, 264–281.PubMedGoogle Scholar
  120. Tobin A. J. and Khrestchatisky M. (1989) Gene expression in the mammalian nervous system, inBasic Neurochemistry, 4th ed. (Siegel G., Agranoff B., Albers R. W., and Molinoff P., eds.), Raven, New York, pp. 417–428.Google Scholar
  121. Venugopal J. and Subba Rao K. (1991) Gene expression in different cell types of aging rat brain.J. Neurochem. 56, 812–817.PubMedGoogle Scholar
  122. Vos J. M. and Hanawalt P. C. (1987) Processing of psoralen adducts in active gene: Repair and replication of DNA containing monoadducts and interstrand crosslinks.Cell 50, 1789–1799.Google Scholar
  123. Warner H. R. and Price A. R. (1989) Involvement of DNA-repair in cancer and aging.J. Geront. 44, 45–54.PubMedGoogle Scholar
  124. Waser J., Hubscher U., Kuenzle C. C., and Spadari S. (1979) DNA polymerase β from brain neurons is a repair enzyme.Eur. J. Biochem. 97, 361–368.PubMedGoogle Scholar
  125. Washington W. J., Foote R. S., Dunn W. C., Generoso W. M., and Mitra S. (1989) Age dependent modulation of tissue-specific repair activity or 3-methyl-adenine and O6-methylguanine in DNA of inbred mice.Mech. Aging Dev. 48, 43–52.PubMedGoogle Scholar
  126. Watson J. D. and Crock F. H. C. (1953) Molecular Structure of Nucleic Acids: A structure for Deoxyribose Nucleic Acid.Nature,177, 737.Google Scholar
  127. Wheeler K. T. and Lett J. T. (1974) On the possibility that DNA-repair is related to age in non-dividing cells.Proc. Natl. Acad. Sci. USA 71, 1862–1865.PubMedGoogle Scholar
  128. Wiestler O., Kleihues P. and Pegg A. E. (1984) O6-Alkylguanine-DNA-alkyltransferase activity in human brain and brain tumors.Carcinogenesis 5, 121–124.PubMedGoogle Scholar
  129. Yamane T., Wylnda B. J., and Shulman R. G. (1967) Dihydrothymine from UV irradiated DNA.Proc. Natl. Acad. Sci. USA 58, 439.PubMedGoogle Scholar

Copyright information

© Humana Press, Inc 1993

Authors and Affiliations

  • Kalluri Subba Rao
    • 1
  1. 1.Neurobiochemistry Laboratory, School of Life SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations