Skip to main content
Log in

Axon-myelin transfer of phospholipids and phospholipid precursors

Labeling of myelin phosphoinositides through axonal transport

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 1992

Abstract

Previous studies have provided evidence for axon-to-myelin transfer of intact lipids and lipid precursors for reutilization by myelin enzymes. Several of the lipid constituents of myelin showed significant contralateral/ipsilateral ratios of incorporated radioactivity, indicative of axonal origin, whereas proteins and certain other lipids did not participate in this transfer-reutilization process. The present study will examine the labeling of myelin phosphoinositides by this pathway. Both32PO4 and [3H]inositol were injected monocularly into 7-9-wk-old rabbits and myelin was isolated 7 or 21 days later from pooled optic tracts and superior colliculi. In total lipids32P counts of the isolated myelin samples showed significant contralateral/ipsilateral ratios as well as increasing magnitude of contralateral-ipsilateral differences during the time interval. Thin-layer chromatographic isolation of the myelin phosphoinositides revealed significant32P-labeling of these species, with PIP and PIP2 showing time-related increases. This resembled the labeling pattern of the major phospholipids from rabbit optic system myelin in a previous study and suggested incorporation of axon-derived phosphate by myelin-associated enzymes. The32P label in PI, on the other hand, remained constant between 7 and 21 days, sugesting transfer of intact lipid. This was supported by the labeling pattern with [3H]inositol, which also showed no increase over time for PI. These results suggest axon-myelin transfer of intact PI followed by myelin-localized incorporation of axon-derived phosphate groups into PIP and PIP2. The general topic of axon-myelin transfer of phospholipids and phospholipid precursors is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PI:

phosphatidylinositol

PIP:

phosphatidylinositol 4-monophosphate

PIP2 :

phosphatidylinositol 4,5-bisphosphate

CL:

contralateral

IL:

ipsilateral

EM:

electron microscope

References

  • Alberghina M. M., Viola M., and Giuffrida A. M. (1982a) Transfer of axonally transported phospholipids into myelin isolated from rabbit optic pathway.Neurochem. Res. 7, 139–149.

    Article  PubMed  CAS  Google Scholar 

  • Alberghina M. M., Karlsson J. O., and Giuffrida A. M. (1982b) Rapid migration of inositol phospholipids with axonally transported substances in the rabbit optic pathway.J. Neurochem. 39, 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Barres B. A. (1991) New roles for glia.J. Neurosci. 11, 3685–3694.

    PubMed  CAS  Google Scholar 

  • Bell M. E., Peterson R. G., and Eichberg J. (1982) Metabolism of phospholipids in peripheral nerve from rats with chronic streptozotocin-induced diabetes.J. Neurochem. 39, 192–200.

    Article  PubMed  CAS  Google Scholar 

  • Berkley K. J., and Contos N. (1987) A glial-neuronalglial communication system in the mammalian central nervous system.Brain Res. 414, 49–67.

    Article  PubMed  CAS  Google Scholar 

  • Brammer M. J. (1978) The protein-mediated transfer of lecithin to subfractions of mature and developing rat myelin.J. Neurochem. 31, 1435–1440.

    Article  PubMed  CAS  Google Scholar 

  • Braun P. E., Horvath E., Yong V. W., and Bernier L. (1990) Identification of GTP-binding proteins in myelin and oligodendrocyte membranes.J. Neurosci. Res. 26, 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Brunetti M., Di Giamberardino L., Porcellati G., and Droz B. (1981) Contribution of axonal transport to the renewal of myelin phospholipids in nerves. II. Biochemical study.Brain Res. 219, 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Brunetti M., Droz B., Di Giamberardino L., Koenig H. L., Carretero F., and Porcellati G. (1983) Axonal transport of ethanolamine glycerophospholipids. Preferential accumulation of transported ethanolamine plasmalogen in myelin.Neurochem. Pathol. 1, 59–80.

    CAS  Google Scholar 

  • Byrne M. C., Sbaschnig-Agler M., Aquino D. A., Sclafani J. R., and Ledeen R. W. (1985) Procedure for isolation of gangliosides in high yield and purity: simultaneous isolation of neutral glycosphingolipids.Anal. Biochem. 148, 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh D. S., Bear W. D., and Brockerhoff H. (1978) Polyphosphoinositide biosynthesis in three subfractions of rat brain myelin.J. Neurochem. 30, 1191–1193.

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh D. S., Kuizon S., Bear W. D., and Brockerhoff H. (1982) Polyphosphoinositide mono-and diphosphoesterases of three subfractions of rat brain myelin.Neurochem. Res. 7, 617–626.

    Article  PubMed  CAS  Google Scholar 

  • De Vries G. H., Chalifour R. J., and Kanfer J. N. (1983) The presence of phospholipase D in rat central nervous system axolemma.J. Neurochem. 40, 1189–1191.

    Article  Google Scholar 

  • Droz B., Di Giamberardino L., Koenig H. L., Boyenval J., and Hassig R. (1978) Axon-myelin transfer of phospholipid components in the course of their axonal-transport as visualized by radioautography.Brain Res. 155, 347–353.

    Article  PubMed  CAS  Google Scholar 

  • Droz B., Brunetti M., Di Giamberardino L., Koenig H. L., and Porcellati G. (1979) Transfer of phospholipid constituents to glia during axonal transport.Soc. Neurosci. Symp. 4, 344–360.

    CAS  Google Scholar 

  • Droz B., Di Giamberardino L., and Koenig H. L. (1981) Contribution of axonal transport to the renewal of myelin phospholipids in peripheral nerves. I. Quantitative radioautographic study.Brain Res. 219, 57–71.

    Article  PubMed  CAS  Google Scholar 

  • Eichberg J., and Dawson R. M. C. (1965) Polyphosphoinositides in myelin.Biochem. J. 96, 644–650.

    PubMed  CAS  Google Scholar 

  • Gainer H. (1978) Intercellular transfer of proteins from glial cells to axons.TINS 1, 93–96.

    Google Scholar 

  • Goldstein R. S., Weiss K. R., and Schwartz J. H. (1982) Intraneuronal injection of horseradish peroxidase labels glial cells associated with the axons of the giant metacerebral neuron of aplysia.J. Neurosci. 2, 1567–1577.

    PubMed  CAS  Google Scholar 

  • Golly F., Larocca J. N., and Ledeen R. W. (1990) Phosphoinositide breakdown in isolated myelin is stimulated by GTP analogues and calcium.J. Neurosci. Res. 27, 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Gould R. M. (1976) Inositol lipid synthesis in axons and unmyelinated fibers of peripheral nerve.Brain Res.117, 169–174.

    Article  CAS  Google Scholar 

  • Gould R. M., and Dawson R. M. C. (1976) Incorporation of newly formed lecithin into peripheral nerve myelin.J. Cell Biol. 68, 480–496.

    Article  PubMed  CAS  Google Scholar 

  • Gould R. M., Spivak W. D., Sinatra R. S., Lindquist T. D., and Ingoglia N. A. (1982) Axonal transport of choline lipids in normal and regenerating rat sciatic nerve.J. Neurochem. 39, 1569–1578.

    Article  PubMed  CAS  Google Scholar 

  • Gould R. M., Holshek J., Silverman W., and Spivack W. D. (1987) Localization of phospholipid synthesis to Schwann cells and axons.J. Neurochem. 48, 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  • Gould R. M. and Alberghina M. (1990) Lipid Metabolism in the Squid Nervuus System. InSquid as Experimental Animals (Gilbert D. L., Adelman W. J. Jr., and Arnold J. M., eds.), Plenum, NY, pp. 323–368.

    Google Scholar 

  • Grossfeld R. M., Klinge M. A., Lieberman E. M., and Stewart L. C. (1988) Axon-glia transfer of a protein and a carbohydrate.Glia 1, 292–300.

    Article  PubMed  CAS  Google Scholar 

  • Haley J. E. and Ledeen R. W. (1979) Incorporation of axonally transported substances into myelin lipids.J. Neurochem. 32, 735–742.

    Article  PubMed  CAS  Google Scholar 

  • Haley J. E., Samuels F. G., and Ledeen R. W. (1981) Study of myelin purity in relation to axonal contaminants.Cell. Mol. Neurobiol. 1, 175–187.

    Article  PubMed  CAS  Google Scholar 

  • Haley J. E., Golly F., and Ledeen R. W. (1991) Myelin phosphoinositides are labeled by32P from the axon.Trans. Am. Soc. Neurochem. (abstract)22, 162.

    Google Scholar 

  • Hendelman W. and Bunge R. P. (1969) Radioautographic studies of choline incorporation into peripheral nerve myelin.J. Cell Biol. 40, 190–208.

    Article  PubMed  CAS  Google Scholar 

  • Iacobelli S. (1969) The biosynthesis of triphosphoinositide by purified myelin of peripheral nerve.J. Neurochem. 16, 909–916.

    Article  PubMed  CAS  Google Scholar 

  • Ingoglia N. A., Sharma S. C., Pilchman J., Baranowski K., and Sturman J. S. (1982) Axonal transport and transcellular transfer of nucleosides and polyamines in intact and regenerating optic nerves of mines in intact and regenerating optic nerves of goldfish: speculation of axonal regulation of periaxonal cell metabolism.J. Neurosci. 2, 1412–1423.

    PubMed  CAS  Google Scholar 

  • Kahn D. W. and Morell P. (1989) Evidence for the presence of diacylglycerol kinase in rat brain myelin.Neurochem. Res. 14, 541–546.

    Article  PubMed  CAS  Google Scholar 

  • Keough K. M. W. and Thompson W. (1970) Triphosphoinositide phosphodiesterase in developing brain of the rat and in subcellular fractions of brain.J. Neurochem. 17, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Kumara-Siri M. H. and Gould R. M. (1980) Enzymes of phospholipid synthesis: axonal versus Schwann cell distribution.Brain Res. 186, 315–330.

    Article  PubMed  CAS  Google Scholar 

  • Kunishita T. and Ladeen R. W. (1984) Phospholipid biosynthesis in myelin: presence of CTP:ethanolaminephosphate cytidylyltransferase in purified myelin of rat brain.J. Neurochem. 42, 326–333.

    Article  PubMed  CAS  Google Scholar 

  • Kunishita T., Vaswani K. K., Morrow C. R., Novak G. P., and Ledeen R. W. (1987) Ethanolamine kinase activity in purified myelin of rat brain.J. Neurochem. 48, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Larocca J. N., Cervone A., and Ledeen R. W. (1987a) Stimulation of phosphoinositide hydrolysis in myelin by muscarinic agonist and potassium.Brain Res. 436, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Larocca J. N., Ledeen R. W., Dvorkin B., and Makman M. H. (1987b) Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin.J. Neurosci. 7, 3869–3876.

    PubMed  CAS  Google Scholar 

  • Larocca J. N., Golly F., and Ledeen R. W. (1988) Evidence for the presence of IP3 phosphatase in purified myelin.Trans. Am. Soc. Neurochem. 19, 189.

    Google Scholar 

  • Larocca J. N., Golly F., and Ledeen R. W. (1990) Purified myelin contains several GTP-binding proteins, some of which are substrates for cholera and pertussis toxin.Trans. Am. Soc. Neurochem. (abstract)21, 226.

    Google Scholar 

  • Larocca J. N., Golly F., and Ledeen R. W. (1991) Detection of G-proteins in purified bovine brain myelin.J. Neurochem. 57, 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Lasek R. J., Gainer H. and Barker J. L. (1977) Cell-to-cell transfer of glial proteins to the squid giant axon.J. Cell Biol. 74, 501–523.

    Article  PubMed  CAS  Google Scholar 

  • Ledeen R. W. (1984) Lipid-metabolizing enzymes of myelin and their relation to the axon.J. Lipid Res. 25, 1548–1554.

    PubMed  CAS  Google Scholar 

  • Ledeen R. W. (1985) Transport, exchange, and transfer of phospholipids in the nervous system. InPhospholipids in Nervous Tissue (Eichberg J., ed.), John Wiley & Sons, New York, NY, pp. 135–172.

    Google Scholar 

  • Ledeen R. W. (1992) Enzymes and receptors of myelin. InMyelin: Biology and Chemistry (Martenson R. E., ed.), CRC, Boca Raton, FL, pp. 531–570.

    Google Scholar 

  • Ledeen R. W. and Haley J. E. (1983) Axon-myelin transfer of glycerol-labeled lipids and inorganic phosphate during axonal transport.Brain Res. 269, 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Ledeen R. W., Kunishita T., Wu P.-S., Haley J. E., and Novak G. P. (1985) Phospholipid synthesis in myelin: putative role of the axon. InPhospholipids in the Nervous System, Vol. 2 (Horrocks L. A., Kanfer J. N., and Porcellati G., eds.), Raven, New York, NY, pp. 329–340.

    Google Scholar 

  • Lev-Ram V. and Grinvald A. (1986) Ca2+-and K+-dependent communication between central nervous system myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes.Proc. Natl. Acad. Sci. USA 83, 6651–6655.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist T. D., Sturman J. A., Gould R. M., and Ingoglia N. A. (1985) Axonal transport of polyamines in intact and regenerating axons of the rat sciatic nerve.J. Neurochem. 44, 1913–1919.

    Article  PubMed  CAS  Google Scholar 

  • Norton W. T. and Poduslo S. E. (1973) Myelination in rat brain: method of myelin isolation.J. Neurochem. 21, 749–757.

    Article  PubMed  CAS  Google Scholar 

  • Padilla S. and Pope C. N. (1991) Retrograde axonal transport of locally synthesized phosphoinositides in the rat sciatic nerve.J. neurochem. 57, 415–422.

    Article  PubMed  CAS  Google Scholar 

  • Palmer F. B. St. C. (1990) Enzymes that degrade phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate have different developmental profiles in chick brain.Biochem. Cell. Biol. 68, 800–803.

    Article  PubMed  CAS  Google Scholar 

  • Ramon Y Cajal S. (1928)Degeneration and Regeneration of the Nervous System, Vol. 1 (May R. M., transl. and ed.), Hafner, NY, p. 77.

    Google Scholar 

  • Ruenwongsa P., Singh H., and Jungalwala F. B. (1979) Protein-catalyzed exchange of phosphatidylinositol between rat brain microsomes and myelin.J. Biol. Chem. 254, 9385–9393.

    PubMed  CAS  Google Scholar 

  • Saltiel A. R., Fox J. A., Sherline, P., Sahyoun N., and Cuatrecasas P. (1987) Purification of phosphatidylinositol kinase from bovine brain myelin.Biochem. J. 241, 759–763.

    PubMed  CAS  Google Scholar 

  • Schacht J. (1976) Inhibition by neomycin of polyphosphoinositide tumover in subcellular fractions of guinea-pig cerebral cortexin vitro.J. Neurochem. 27, 1119–1124.

    Article  PubMed  CAS  Google Scholar 

  • Singer M. and Salpeter M. M. (1966) The transport of3H-1-histidine through the Schwann and myelin sheath into the axon, including a reevaluation of the myelin function.J. Morphol. 120, 281–316.

    Article  PubMed  CAS  Google Scholar 

  • Toews A. D. and Morell P. (1981) Turnover of axonally transported phospholipids in nerve endings of retinal ganglion cells.J. Neurochem. 37, 1316–1323.

    Article  PubMed  CAS  Google Scholar 

  • Vaswani K. K. and Ledeen R. W. (1987) Long-chain acyl-coenzyme A synthetase in rat brain myelin.J. Neurosci. Res. 17, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Vaswani K. K. and Ledeen R. W. (1989a) Purified rat brain myelin contains measurable acylCoA:lysophospholipid acyltransferase(s) but little, if any, glycerol-3-phosphate acyltransferase.J. Neurochem. 52, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Vaswani K. K. and Ledeen R. W. (1989b) Phosphatidate phosphohydrolase in purified rat brain myelin.J. Neurosci. Res. 24, 431–435.

    Article  PubMed  CAS  Google Scholar 

  • Viancour T. A., Bittner G. D., and Ballinger M. L. (1981) Selective transfer of Lucifer Yellow CH from axoplasm to adaxonal glia.Nature 293, 65–67.

    Article  PubMed  CAS  Google Scholar 

  • Wiggins R. C. (1988) Are axons and oligodendroglia metabolically coupled?Trans. Am. Soc. Neurochem. (abstract)19, 210.

    Google Scholar 

  • Wirtz K. W. A., Jolles J., Westerman J., and Neys F. (1976) Phospholipid exchange proteins in synaptosome and myelin fraction from rat brain.Nature 260, 354–355.

    Article  PubMed  CAS  Google Scholar 

  • Wu P.-S. and Ledeen R. W. (1980) Evidence for the presence of CDP-ethanolamine: 1,2-diacyl-sn-glycerol ethanolaminephosphotransferase in rat central nervous system myelin.J. Neurochem. 35, 659–666.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02757948.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledeen, R.W., Golly, F. & Haley, J.E. Axon-myelin transfer of phospholipids and phospholipid precursors. Mol Neurobiol 6, 179–190 (1992). https://doi.org/10.1007/BF02780551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02780551

Index Entries

Navigation