Molecular Neurobiology

, Volume 6, Issue 2–3, pp 179–190 | Cite as

Axon-myelin transfer of phospholipids and phospholipid precursors

Labeling of myelin phosphoinositides through axonal transport
  • Robert W. Ledeen
  • Francis Golly
  • James E. Haley


Previous studies have provided evidence for axon-to-myelin transfer of intact lipids and lipid precursors for reutilization by myelin enzymes. Several of the lipid constituents of myelin showed significant contralateral/ipsilateral ratios of incorporated radioactivity, indicative of axonal origin, whereas proteins and certain other lipids did not participate in this transfer-reutilization process. The present study will examine the labeling of myelin phosphoinositides by this pathway. Both32PO4 and [3H]inositol were injected monocularly into 7-9-wk-old rabbits and myelin was isolated 7 or 21 days later from pooled optic tracts and superior colliculi. In total lipids32P counts of the isolated myelin samples showed significant contralateral/ipsilateral ratios as well as increasing magnitude of contralateral-ipsilateral differences during the time interval. Thin-layer chromatographic isolation of the myelin phosphoinositides revealed significant32P-labeling of these species, with PIP and PIP2 showing time-related increases. This resembled the labeling pattern of the major phospholipids from rabbit optic system myelin in a previous study and suggested incorporation of axon-derived phosphate by myelin-associated enzymes. The32P label in PI, on the other hand, remained constant between 7 and 21 days, sugesting transfer of intact lipid. This was supported by the labeling pattern with [3H]inositol, which also showed no increase over time for PI. These results suggest axon-myelin transfer of intact PI followed by myelin-localized incorporation of axon-derived phosphate groups into PIP and PIP2. The general topic of axon-myelin transfer of phospholipids and phospholipid precursors is reviewed.

Index Entries

Myelin myelin phospholipids: myelin phosphoinositides axonal-transport axon-myelin transfer 





phosphatidylinositol 4-monophosphate


phosphatidylinositol 4,5-bisphosphate






electron microscope


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberghina M. M., Viola M., and Giuffrida A. M. (1982a) Transfer of axonally transported phospholipids into myelin isolated from rabbit optic pathway.Neurochem. Res. 7, 139–149.PubMedCrossRefGoogle Scholar
  2. Alberghina M. M., Karlsson J. O., and Giuffrida A. M. (1982b) Rapid migration of inositol phospholipids with axonally transported substances in the rabbit optic pathway.J. Neurochem. 39, 223–227.PubMedCrossRefGoogle Scholar
  3. Barres B. A. (1991) New roles for glia.J. Neurosci. 11, 3685–3694.PubMedGoogle Scholar
  4. Bell M. E., Peterson R. G., and Eichberg J. (1982) Metabolism of phospholipids in peripheral nerve from rats with chronic streptozotocin-induced diabetes.J. Neurochem. 39, 192–200.PubMedCrossRefGoogle Scholar
  5. Berkley K. J., and Contos N. (1987) A glial-neuronalglial communication system in the mammalian central nervous system.Brain Res. 414, 49–67.PubMedCrossRefGoogle Scholar
  6. Brammer M. J. (1978) The protein-mediated transfer of lecithin to subfractions of mature and developing rat myelin.J. Neurochem. 31, 1435–1440.PubMedCrossRefGoogle Scholar
  7. Braun P. E., Horvath E., Yong V. W., and Bernier L. (1990) Identification of GTP-binding proteins in myelin and oligodendrocyte membranes.J. Neurosci. Res. 26, 16–23.PubMedCrossRefGoogle Scholar
  8. Brunetti M., Di Giamberardino L., Porcellati G., and Droz B. (1981) Contribution of axonal transport to the renewal of myelin phospholipids in nerves. II. Biochemical study.Brain Res. 219, 73–84.PubMedCrossRefGoogle Scholar
  9. Brunetti M., Droz B., Di Giamberardino L., Koenig H. L., Carretero F., and Porcellati G. (1983) Axonal transport of ethanolamine glycerophospholipids. Preferential accumulation of transported ethanolamine plasmalogen in myelin.Neurochem. Pathol. 1, 59–80.Google Scholar
  10. Byrne M. C., Sbaschnig-Agler M., Aquino D. A., Sclafani J. R., and Ledeen R. W. (1985) Procedure for isolation of gangliosides in high yield and purity: simultaneous isolation of neutral glycosphingolipids.Anal. Biochem. 148, 163–173.PubMedCrossRefGoogle Scholar
  11. Deshmukh D. S., Bear W. D., and Brockerhoff H. (1978) Polyphosphoinositide biosynthesis in three subfractions of rat brain myelin.J. Neurochem. 30, 1191–1193.PubMedCrossRefGoogle Scholar
  12. Deshmukh D. S., Kuizon S., Bear W. D., and Brockerhoff H. (1982) Polyphosphoinositide mono-and diphosphoesterases of three subfractions of rat brain myelin.Neurochem. Res. 7, 617–626.PubMedCrossRefGoogle Scholar
  13. De Vries G. H., Chalifour R. J., and Kanfer J. N. (1983) The presence of phospholipase D in rat central nervous system axolemma.J. Neurochem. 40, 1189–1191.CrossRefGoogle Scholar
  14. Droz B., Di Giamberardino L., Koenig H. L., Boyenval J., and Hassig R. (1978) Axon-myelin transfer of phospholipid components in the course of their axonal-transport as visualized by radioautography.Brain Res. 155, 347–353.PubMedCrossRefGoogle Scholar
  15. Droz B., Brunetti M., Di Giamberardino L., Koenig H. L., and Porcellati G. (1979) Transfer of phospholipid constituents to glia during axonal transport.Soc. Neurosci. Symp. 4, 344–360.Google Scholar
  16. Droz B., Di Giamberardino L., and Koenig H. L. (1981) Contribution of axonal transport to the renewal of myelin phospholipids in peripheral nerves. I. Quantitative radioautographic study.Brain Res. 219, 57–71.PubMedCrossRefGoogle Scholar
  17. Eichberg J., and Dawson R. M. C. (1965) Polyphosphoinositides in myelin.Biochem. J. 96, 644–650.PubMedGoogle Scholar
  18. Gainer H. (1978) Intercellular transfer of proteins from glial cells to axons.TINS 1, 93–96.Google Scholar
  19. Goldstein R. S., Weiss K. R., and Schwartz J. H. (1982) Intraneuronal injection of horseradish peroxidase labels glial cells associated with the axons of the giant metacerebral neuron of aplysia.J. Neurosci. 2, 1567–1577.PubMedGoogle Scholar
  20. Golly F., Larocca J. N., and Ledeen R. W. (1990) Phosphoinositide breakdown in isolated myelin is stimulated by GTP analogues and calcium.J. Neurosci. Res. 27, 342–348.PubMedCrossRefGoogle Scholar
  21. Gould R. M. (1976) Inositol lipid synthesis in axons and unmyelinated fibers of peripheral nerve.Brain Res.117, 169–174.CrossRefGoogle Scholar
  22. Gould R. M., and Dawson R. M. C. (1976) Incorporation of newly formed lecithin into peripheral nerve myelin.J. Cell Biol. 68, 480–496.PubMedCrossRefGoogle Scholar
  23. Gould R. M., Spivak W. D., Sinatra R. S., Lindquist T. D., and Ingoglia N. A. (1982) Axonal transport of choline lipids in normal and regenerating rat sciatic nerve.J. Neurochem. 39, 1569–1578.PubMedCrossRefGoogle Scholar
  24. Gould R. M., Holshek J., Silverman W., and Spivack W. D. (1987) Localization of phospholipid synthesis to Schwann cells and axons.J. Neurochem. 48, 1121–1131.PubMedCrossRefGoogle Scholar
  25. Gould R. M. and Alberghina M. (1990) Lipid Metabolism in the Squid Nervuus System. InSquid as Experimental Animals (Gilbert D. L., Adelman W. J. Jr., and Arnold J. M., eds.), Plenum, NY, pp. 323–368.Google Scholar
  26. Grossfeld R. M., Klinge M. A., Lieberman E. M., and Stewart L. C. (1988) Axon-glia transfer of a protein and a carbohydrate.Glia 1, 292–300.PubMedCrossRefGoogle Scholar
  27. Haley J. E. and Ledeen R. W. (1979) Incorporation of axonally transported substances into myelin lipids.J. Neurochem. 32, 735–742.PubMedCrossRefGoogle Scholar
  28. Haley J. E., Samuels F. G., and Ledeen R. W. (1981) Study of myelin purity in relation to axonal contaminants.Cell. Mol. Neurobiol. 1, 175–187.PubMedCrossRefGoogle Scholar
  29. Haley J. E., Golly F., and Ledeen R. W. (1991) Myelin phosphoinositides are labeled by32P from the axon.Trans. Am. Soc. Neurochem. (abstract)22, 162.Google Scholar
  30. Hendelman W. and Bunge R. P. (1969) Radioautographic studies of choline incorporation into peripheral nerve myelin.J. Cell Biol. 40, 190–208.PubMedCrossRefGoogle Scholar
  31. Iacobelli S. (1969) The biosynthesis of triphosphoinositide by purified myelin of peripheral nerve.J. Neurochem. 16, 909–916.PubMedCrossRefGoogle Scholar
  32. Ingoglia N. A., Sharma S. C., Pilchman J., Baranowski K., and Sturman J. S. (1982) Axonal transport and transcellular transfer of nucleosides and polyamines in intact and regenerating optic nerves of mines in intact and regenerating optic nerves of goldfish: speculation of axonal regulation of periaxonal cell metabolism.J. Neurosci. 2, 1412–1423.PubMedGoogle Scholar
  33. Kahn D. W. and Morell P. (1989) Evidence for the presence of diacylglycerol kinase in rat brain myelin.Neurochem. Res. 14, 541–546.PubMedCrossRefGoogle Scholar
  34. Keough K. M. W. and Thompson W. (1970) Triphosphoinositide phosphodiesterase in developing brain of the rat and in subcellular fractions of brain.J. Neurochem. 17, 1–11.PubMedCrossRefGoogle Scholar
  35. Kumara-Siri M. H. and Gould R. M. (1980) Enzymes of phospholipid synthesis: axonal versus Schwann cell distribution.Brain Res. 186, 315–330.PubMedCrossRefGoogle Scholar
  36. Kunishita T. and Ladeen R. W. (1984) Phospholipid biosynthesis in myelin: presence of CTP:ethanolaminephosphate cytidylyltransferase in purified myelin of rat brain.J. Neurochem. 42, 326–333.PubMedCrossRefGoogle Scholar
  37. Kunishita T., Vaswani K. K., Morrow C. R., Novak G. P., and Ledeen R. W. (1987) Ethanolamine kinase activity in purified myelin of rat brain.J. Neurochem. 48, 1–7.PubMedCrossRefGoogle Scholar
  38. Larocca J. N., Cervone A., and Ledeen R. W. (1987a) Stimulation of phosphoinositide hydrolysis in myelin by muscarinic agonist and potassium.Brain Res. 436, 357–362.PubMedCrossRefGoogle Scholar
  39. Larocca J. N., Ledeen R. W., Dvorkin B., and Makman M. H. (1987b) Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin.J. Neurosci. 7, 3869–3876.PubMedGoogle Scholar
  40. Larocca J. N., Golly F., and Ledeen R. W. (1988) Evidence for the presence of IP3 phosphatase in purified myelin.Trans. Am. Soc. Neurochem. 19, 189.Google Scholar
  41. Larocca J. N., Golly F., and Ledeen R. W. (1990) Purified myelin contains several GTP-binding proteins, some of which are substrates for cholera and pertussis toxin.Trans. Am. Soc. Neurochem. (abstract)21, 226.Google Scholar
  42. Larocca J. N., Golly F., and Ledeen R. W. (1991) Detection of G-proteins in purified bovine brain myelin.J. Neurochem. 57, 30–38.PubMedCrossRefGoogle Scholar
  43. Lasek R. J., Gainer H. and Barker J. L. (1977) Cell-to-cell transfer of glial proteins to the squid giant axon.J. Cell Biol. 74, 501–523.PubMedCrossRefGoogle Scholar
  44. Ledeen R. W. (1984) Lipid-metabolizing enzymes of myelin and their relation to the axon.J. Lipid Res. 25, 1548–1554.PubMedGoogle Scholar
  45. Ledeen R. W. (1985) Transport, exchange, and transfer of phospholipids in the nervous system. InPhospholipids in Nervous Tissue (Eichberg J., ed.), John Wiley & Sons, New York, NY, pp. 135–172.Google Scholar
  46. Ledeen R. W. (1992) Enzymes and receptors of myelin. InMyelin: Biology and Chemistry (Martenson R. E., ed.), CRC, Boca Raton, FL, pp. 531–570.Google Scholar
  47. Ledeen R. W. and Haley J. E. (1983) Axon-myelin transfer of glycerol-labeled lipids and inorganic phosphate during axonal transport.Brain Res. 269, 267–275.PubMedCrossRefGoogle Scholar
  48. Ledeen R. W., Kunishita T., Wu P.-S., Haley J. E., and Novak G. P. (1985) Phospholipid synthesis in myelin: putative role of the axon. InPhospholipids in the Nervous System, Vol. 2 (Horrocks L. A., Kanfer J. N., and Porcellati G., eds.), Raven, New York, NY, pp. 329–340.Google Scholar
  49. Lev-Ram V. and Grinvald A. (1986) Ca2+-and K+-dependent communication between central nervous system myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes.Proc. Natl. Acad. Sci. USA 83, 6651–6655.PubMedCrossRefGoogle Scholar
  50. Lindquist T. D., Sturman J. A., Gould R. M., and Ingoglia N. A. (1985) Axonal transport of polyamines in intact and regenerating axons of the rat sciatic nerve.J. Neurochem. 44, 1913–1919.PubMedCrossRefGoogle Scholar
  51. Norton W. T. and Poduslo S. E. (1973) Myelination in rat brain: method of myelin isolation.J. Neurochem. 21, 749–757.PubMedCrossRefGoogle Scholar
  52. Padilla S. and Pope C. N. (1991) Retrograde axonal transport of locally synthesized phosphoinositides in the rat sciatic nerve.J. neurochem. 57, 415–422.PubMedCrossRefGoogle Scholar
  53. Palmer F. B. St. C. (1990) Enzymes that degrade phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate have different developmental profiles in chick brain.Biochem. Cell. Biol. 68, 800–803.PubMedCrossRefGoogle Scholar
  54. Ramon Y Cajal S. (1928)Degeneration and Regeneration of the Nervous System, Vol. 1 (May R. M., transl. and ed.), Hafner, NY, p. 77.Google Scholar
  55. Ruenwongsa P., Singh H., and Jungalwala F. B. (1979) Protein-catalyzed exchange of phosphatidylinositol between rat brain microsomes and myelin.J. Biol. Chem. 254, 9385–9393.PubMedGoogle Scholar
  56. Saltiel A. R., Fox J. A., Sherline, P., Sahyoun N., and Cuatrecasas P. (1987) Purification of phosphatidylinositol kinase from bovine brain myelin.Biochem. J. 241, 759–763.PubMedGoogle Scholar
  57. Schacht J. (1976) Inhibition by neomycin of polyphosphoinositide tumover in subcellular fractions of guinea-pig cerebral cortexin vitro.J. Neurochem. 27, 1119–1124.PubMedCrossRefGoogle Scholar
  58. Singer M. and Salpeter M. M. (1966) The transport of3H-1-histidine through the Schwann and myelin sheath into the axon, including a reevaluation of the myelin function.J. Morphol. 120, 281–316.PubMedCrossRefGoogle Scholar
  59. Toews A. D. and Morell P. (1981) Turnover of axonally transported phospholipids in nerve endings of retinal ganglion cells.J. Neurochem. 37, 1316–1323.PubMedCrossRefGoogle Scholar
  60. Vaswani K. K. and Ledeen R. W. (1987) Long-chain acyl-coenzyme A synthetase in rat brain myelin.J. Neurosci. Res. 17, 65–70.PubMedCrossRefGoogle Scholar
  61. Vaswani K. K. and Ledeen R. W. (1989a) Purified rat brain myelin contains measurable acylCoA:lysophospholipid acyltransferase(s) but little, if any, glycerol-3-phosphate acyltransferase.J. Neurochem. 52, 69–74.PubMedCrossRefGoogle Scholar
  62. Vaswani K. K. and Ledeen R. W. (1989b) Phosphatidate phosphohydrolase in purified rat brain myelin.J. Neurosci. Res. 24, 431–435.PubMedCrossRefGoogle Scholar
  63. Viancour T. A., Bittner G. D., and Ballinger M. L. (1981) Selective transfer of Lucifer Yellow CH from axoplasm to adaxonal glia.Nature 293, 65–67.PubMedCrossRefGoogle Scholar
  64. Wiggins R. C. (1988) Are axons and oligodendroglia metabolically coupled?Trans. Am. Soc. Neurochem. (abstract)19, 210.Google Scholar
  65. Wirtz K. W. A., Jolles J., Westerman J., and Neys F. (1976) Phospholipid exchange proteins in synaptosome and myelin fraction from rat brain.Nature 260, 354–355.PubMedCrossRefGoogle Scholar
  66. Wu P.-S. and Ledeen R. W. (1980) Evidence for the presence of CDP-ethanolamine: 1,2-diacyl-sn-glycerol ethanolaminephosphotransferase in rat central nervous system myelin.J. Neurochem. 35, 659–666.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press, Inc 1992

Authors and Affiliations

  • Robert W. Ledeen
    • 1
  • Francis Golly
    • 1
  • James E. Haley
    • 1
  1. 1.Departments of Neurology and BiochemistryAlbert Einstein College of MedicineBronx

Personalised recommendations