Skip to main content
Log in

Enzyme engineering

  • Review
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzyme research and development efforts have been shaped by the tools and concepts available for enzyme production and utilization. A new phase of enzymology characterized by the production of modified protein catalysts has begun, made possible by recombinant DNA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Notes

  1. For a review, see the following: R. Wetzel (1980) “Applications of recombinant DNA technology,”Amer. Sci. 68, 664.

    CAS  Google Scholar 

  2. An in-depth review of the interplay of chemistry and biology, focusing on the period 1800–1950, is given by Joseph S. Fruton (1972),Molecules and Life, Wiley-Interscience, New York.

    Google Scholar 

  3. A. Naquet, (1867)Principes de Chimie Fondés sur les Théories Modernes, 2nd Ed., Savy, Paris, p. 612 (translation taken from ref.3) Joseph S. Fruton (1972),Molecules and Life, Wiley-Interscience, New York.

    Google Scholar 

  4. See J. J. Berzelius (1813),A View of the Progress and Present State of Animal Chemistry (translation by G. Brunnmark), Hatchard Johnson and Boosey, London, p. 4.

    Google Scholar 

  5. Amylase, separated as an alcohol precipitate of malt extract, is probably the first enzyme isolated. In 1833, the material, then named “diastase,” was shown to convert starch into sugar; see A. Payen and J. F. Persoz (1833), “Mémoire su la diastase, les principaux produits de ses réactions, et leurs applications aux arts industriels,”Ann. Chem. (Phys.) 53, 73.

    Google Scholar 

  6. L. Pasteur (1878) “Première response à M. Berthelot,”Compt. Rend. 87, 1058.

    Google Scholar 

  7. J. Liebig (1839) “Uber die Erscheinung der Gährung, Fäulnis und Verwesung und ihre Ursachen,Ann. 30, 250.

    Google Scholar 

  8. M. Berthelot (1860), “Chimie Organique Fondée sur la Synthèse,” Volume II, Mallet-Bachelier, Paris, pp. 655–656.

    Google Scholar 

  9. E. Buchner (1897), “Alkoholische Gahrung ohne Hefezellen,”Ber. Chem. Ges. 30, 117.

    Article  CAS  Google Scholar 

  10. J. B. Sumner (1926), “The isolation and crystallization of the enzyme urease,”J. Biol. Chem. 69, 435. (b) J. B. Sumner (1933), “The chemical nature of enzymes,”Science 78, 335.

    CAS  Google Scholar 

  11. J. B. Sumner and G. F. Somers (1947)Chemistry and Methods of Enzymes, Academic Press, New York.

    Google Scholar 

  12. J. H. Northrop, M. Kunitz, and R. M. Herriott (1948),Crystalline Enzymes, Columbia University Press, New York.

    Google Scholar 

  13. L. Pauling and C. Niemann (1939), “The structure of proteins,”J. Amer. Chem. Soc. 61, 1860.

    Article  CAS  Google Scholar 

  14. J. D. Bernal and D. Crowfoot (1934), “X-ray photographs of crystalline pepsin,”Nature 133, 794.

    CAS  Google Scholar 

  15. J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, and H. Wyckoff, “A three-dimensional model of the myoglobin molecule obtained by X-ray analysis,”Nature 181, 662.

  16. F. Sanger (1945), “The free amino groups of insulin,”Biochem. J. 39, 507.

    CAS  Google Scholar 

  17. A. P. Ryle, F. Sanger, L. F. Smith, and R. Kitai (1955), “The disulfide bonds of insulin,”Biochem. J. 60, 541, 556.

    CAS  Google Scholar 

  18. D. C. Hodgkin (1970), “Crystal structure of insulin,”Verh. Schweiz. Naturforsch. Ges. 150, 93. (b) T. Blundell, G. Dodson, D. Hodgkin, and D. Mercola (1972) “Insulin: the structure in the cyrstals and its reflection in chemistry and biology,”Adv. Protein Chem. 26, 279.

    Google Scholar 

  19. E. Fischer's lock and key analogy appears in, “Einfluss der Konfiguration auf die Wirkung der Enzyme (1894),Ber. chem. Ges. 27, 2992. It is clear from Fischer's later writing, however, that he never realized the true size nor the complexity of the enzymes; see. E. Fischer (1923) “Untersuchungen über Aminosäuren Polypeptide unde Proteine II, 1907–1919, Springer, Berlin, p. 8.

  20. See G. E. Means and R. E. Feeney (1971),Chemical Modification of Proteins, Holden-Day: San Francisco.

    Google Scholar 

  21. See W. H. Rastetter and D. P. Phillion (1981), “Synthesis of Four Thiol-Substituted Crown Ethers,”J. Org. Chem. 46, 3204 and ref.2 cited therein R. Wetzel (1980), “Applications of recombinant DNA technology,”Amer. Sci. 68, 664.

    Article  CAS  Google Scholar 

  22. J. M. Lehn (1978), “The chemistry of macropolycyclic inclusion complexes,”Acct. Chem. Res. 11, 49.

    Article  CAS  Google Scholar 

  23. D. D. MacNicol, J. J. McKendrick, and D. R. Wilson (1978), “Clathrates and molecular inclusion phenomena,”Chem. Soc. Rev. 7, 65. (b) W. Saenger (1980), “Cyclodextrin inclusion compounds in research and industry,”Agnew. Chem. Int. Ed. Engl. 19, 344.

    Article  CAS  Google Scholar 

  24. For reviews of graphics molecular modeling, see the folloing: (a) R. Langridge, T. E. Ferrin, I. D. Kuntz and M. L. Connolly (1981), “Real-time color graphics in studies of molecular interactions,”Science 211, 661. (b) G. Richards and V. Sackwild (1982), “Computer graphics in drug research,”Chem. Br. 18, 635 (c) D. A. Pensak (1983), “Modeling system cuts wasteful steps from complex R and D,”Industrial Research and Development, p. 74. (d) R. S. Meltzer and J. T. Freeman (January/February 1983), “Researchers use graphics modeling to search for new miracle drugs,”Computer Graphics News, p. 3.

    Article  CAS  Google Scholar 

  25. (a) A. D. Charles, A. E. Gautier, M. D. Edge, and J. R. Knowles (1982), “Targeted point mutation that creates a unique EcoRI site within the signal codons of the β-lactamase gene without altering enzyme secretion or processing,”J. Biol. Chem. (1982)257, 7930. (b) D. Shortle, D. Koshland, G. M. Weinstock, and D. Botstein (1980),Proc. Natl. Acad. Sci. USA 77, 5375.

    CAS  Google Scholar 

  26. D. Koshland and D. Botstein (1980), “Secretion of β-lactamase requires the carboxy end of the protein,”Cell 20, 749.

    Article  CAS  Google Scholar 

  27. S. Inouye, X. Soberon, T. Franceschini, D. Nakamura, K. Itakura, and M. Inouye (1982), “Role of positive charge on the amino-terminal region of the signal peptide in protein secretion across the membrane,”Proc. Natl. Acad. Sci. USA 79, 3438.

    Article  CAS  Google Scholar 

  28. I. S. Sigal, B. G. Harwood, and R. Arentzen (1982), “Thiol-β-lactamase: Replacement of the active-site serine of RTEM β-lactamase by a cysteine residue,”Proc. Natl. Acad. Sci. USA 79, 7157.

    Article  CAS  Google Scholar 

  29. (a) G. Dalbadie-McFarland, L. W. Cohen, A. D. Riggs, C. Morin, K. Itakura, and J. H. Richards (1982), “Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function,”Proc. Natl. Acad. Sci USA 79, 6409; (b)Chem. Eng. News, August 2, 1982; p. 19.

    Article  CAS  Google Scholar 

  30. R. Wetzel, D. G. Kleid, R. Crea, H. L. Heyneker, D. G. Yansura, T. Hirose, A. Kraszewski, A. D. Riggs, K. Itakura, and D. V. Goeddel (1981), “Expression inEscherichia coli of a chemically synthesized gene for a “mini-C” analog of human proinsulin,”Gene 16, 63.

    Article  CAS  Google Scholar 

  31. G. Winter, A. R. Fersht, A. J. Wilkinson, M. Zoeller, and M. Smith, (1982), “Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding,”Nature 299, 756.

    Article  CAS  Google Scholar 

  32. C. A. Hutchison, III, S. Phillips, M. H. Edgell, S. Gillam, P. Jahnke, and M. Smith (1978), “Mutagenesis at a specific position in a DNA sequence,”J. Biol. Chem. 253, 6551.

    CAS  Google Scholar 

  33. A. Razin, T. Hirose, K. Itakura, and A. D. Riggs (1978), “Efficient correction of a mutation by use of chemically synthesized DNA,”Proc. Natl. Acad. Sci. USA 75, 4268.

    Article  CAS  Google Scholar 

  34. R. B. Wallace, M. Schold, M. J. Johnson, P. Dembek, and K. Itakura (1981), “Oligonucleotide directed mutagenesis of the human β-globin gene: a general method for producing specific point mutations in cloned DNA,”Nucleic Acid Res. 9, 3647.

    Article  CAS  Google Scholar 

  35. M. Smith and S. Gillam (1981), “Constructed mutants using synthetic oligodeoxyribonucleotides as site-specific mutagens”, inGenetic Engineering, Principles and Methods, Vol. 3, J. K. Setlow and A. Hollaender, eds., Plenum Press, New York, p. 1.

    Google Scholar 

  36. D. Botstein, D. Shortle, and M. Rose (1982), “Mutagenesis of cloned genes,” inProceedings of the IVth International Symposium on Genetics of Industrial Micoorganisms, Y. Ikeda and T. Beppu, eds., Kodansha, Tokyo, p. 169.

    Google Scholar 

  37. (a) L. Polgar and M. L. Bender (1967), “The reactivity of thiol-subtilisin, an enzyme containing a synthetic functional group”,Biochemistry 6, 610. (b) K. E. Neet, A. Nanci, and D. E. Koshland, Jr. (1968), “Properties of thiol-subtilisin,”J. Biol. Chem. 243, 6392.

    Article  CAS  Google Scholar 

  38. (a) R. W. Sealock and M. Laskowski, Jr. (1969), “Enzymatic replacement of the arginyl by a lysyl residue in the reactive site of soybean trypsin inhibitor”,Biochemistry 8, 3703. (b) T. R. Leary and M. Laskowski, Jr. (1973) “Enzymatic replacement of arginine 63 by tryptophan 63 in the reactive site of soybean trypsin inhibitor Kunitz. An intentional change from tryptic to chymotryptic specificity.”Fed. Proc. Fed. Am. Soc. Exp. Biol. 32, 465. (c) D. Kowalski and M. Laskowski (1976), “Chemical-enzymatic replacement of Ile64 in the reactive site of soybean trypsin inhibitor (Kunitz),”Biochemistry 15, 1300. (d)Idem, “Chemical-enzymatic insertion of an amino acid residue in the reactive site of soybean trypsin inhibitor (Kunitz),”ibid., p. 1309.

    Article  CAS  Google Scholar 

  39. K. Ulmer (1983), “Protein engineering,”Science 219, 666.

    Article  CAS  Google Scholar 

  40. C. Pabo (1983), “Designing proteins and peptides,”Nature 301, 200.

    Article  CAS  Google Scholar 

  41. K. E. Drexler (1981), “Molecular engineering: an approach to the development of general capabilities for molecular manipulation,”Proc. Natl. Acad. Sci. USA 78, 5275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastetter, W.H. Enzyme engineering. Appl Biochem Biotechnol 8, 423–436 (1983). https://doi.org/10.1007/BF02779915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02779915

Index Entries

Navigation