Skip to main content
Log in

EPR characterization of cellulose triacetate fibers used for enzyme immobilization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

EPR studies of a nitroxide spin label and of the nitroxide spin-labeled albumin entrapped in cellulose triacetate fibers were carried out.

The EPR spectra have shown that within the fiber only two phases are present: a liquid one of medium viscosity trapped inside microcavities, and a polymeric one surrounding them.

After entrapment, spin-labeled albumin is distributed mainly in the liquid phase, though a not negligible amount of it remains within the polymeric matrix.

The EPR studies have shown that, after the standard procedure of drying, the albumin is almost completely precipitated, but about 85% of it returns to solution when the fiber is again placed in the solution.

The behavior of the albumin dissolved inside the microcavities toward denaturating agents and pH change, and that of the free albumin in solution is similar; the minor differences noticed indicate a second-order interaction between the fiber and the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zaborsky, O. R. (1973), inImmobilized Enzymes, CRC Press, Cleveland, Ohio.

    Google Scholar 

  2. Katchalski, E., Silman, I., and Goldman, R. (1971),Advan. Enzymol. 34, 445.

    CAS  Google Scholar 

  3. Goldstein, L., and Manecke, G. (1976), inJ. Solid-Phase Biochemistry 1, 23.

    Google Scholar 

  4. Lynn, M. (1975), inEnzymology, Vol. 1, Marcel Dekker, New York, p. 7.

    Google Scholar 

  5. Marconi, W., and Morisi, F. (1979), inApplied Biochemistry and Bioengineering, Vol. 2, Academic Press, New York.

    Google Scholar 

  6. Dinelli, D. (1972),Process Biochem. 7(8), 9.

    CAS  Google Scholar 

  7. Dinelli, D., Marconi, W., and Morisi, F. (1976), inMethods in Enzymology, Vol. 44, Academic Press, New York, p. 227.

    Google Scholar 

  8. Stone, T. J., Buckam, T., Nordio, P. L., and McConnell, H. M. (1965),Proc. Natl. Acad. Sci. US 54, 1010.

    Article  CAS  Google Scholar 

  9. Grigorian, G. L., Kalmanson, A. E., Rozantzev, E. G., and Suskina, U. S. (1967),Nature,216, 927.

    Article  CAS  Google Scholar 

  10. Sands, R. H. (1955),Phys. Rev. 99, 1222.

    Article  CAS  Google Scholar 

  11. Kneubuhl, T. K. (1960),J. Chem. Phys.,33, 1074.

    Article  CAS  Google Scholar 

  12. Kivelson, D. (1960),J. Chem. Phys. 33, 1904.

    Article  Google Scholar 

  13. Griffth, O. H., and McConnell, H. M. (1966),Proc. Natl. Acad. Sci. US 55, 8.

    Article  Google Scholar 

  14. Kornberg, R. D., McConnell, H. M. (1971),Biochemistry 10, 1111.

    Article  CAS  Google Scholar 

  15. Kornberg, R. D., McConnell, H. M. (1971),Proc. Natl. Acad. Sci. US 68, 2564.

    Article  CAS  Google Scholar 

  16. Yang, J. T., and Foster J. F. (1954),J. Amer. Chem. Soc. 76, 1588.

    Article  CAS  Google Scholar 

  17. Herrington, W. F., Johnson, P., and Ottewil, R. H. (1956),Biochem. J.,62, 569.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulinelli, S., Mantovani, E. & Zanobi, A. EPR characterization of cellulose triacetate fibers used for enzyme immobilization. Appl Biochem Biotechnol 6, 129–141 (1981). https://doi.org/10.1007/BF02779245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02779245

Index Entries

Navigation