Skip to main content
Log in

Entrapment of living microbial cells in covalent polymeric networks

II. A quantitative study on the kinetics of oxidative phenol degradation by entrappedCandida tropicalis cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The kinetics of oxidative phenol degradation with microbial cellsCandida tropicalis, immobilized in a polyacrylamide and polymethacrylamide matrix, were mathematically simulated assuming zero-order and Michaelis-Menten rate equations.

For zero-order kinetics an expanded equation for catalytic effectiveness as a function of the Thiele modulus, Biot number, and partition coefficients was derived and compared with numerical solutions for Michaelis-Menten kinetics. Errors with regard to the zero-order approximation become negligible ifc o/K M >2.

Experimentally determined catalyst activities as a function of particle size and cell concentration were compared to calculated ones. Additional experiments to determine the diffusion and oxygen consumption ratios have been carried out in an effort to resolve the physical parameters to be used in the above mentioned calculations.

Furthermore, experiments on cell growth during reincubation with nutrients and oxygen are reported; an increase in activity up to a factor of ten was observed. These experiments demonstrate that the microbial cells are entrapped in the polymer matrix in the living state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein, J., and Schara, P. (1979),J. Solid Phase Biochem. 5, 61.

    Article  Google Scholar 

  2. Kasche, V., Lundquist, H., Bergman, R., and Axén, R. (1971),Biochem. Biophys. Res. Commun. 45, 615.

    Article  CAS  Google Scholar 

  3. Korus, R., and O’Driscoll, K. F.,Canad. J. Chem. Eng. 52, 5 (1974).

    Google Scholar 

  4. Vieth, W. R., Venkatasubramanian, K., Constantinides, A., and Davidson, B. (1976),Appl. Biochem. Bioeng. 1, 221.

    CAS  Google Scholar 

  5. Greenfield, P. F., Kittrell, J. R., and Laurence, R. L. (1976),Anal. Biochem. 65, 109.

    Article  Google Scholar 

  6. Buchholz, K., and Reuss, M. (1977),Chimia 31, 27.

    CAS  Google Scholar 

  7. Klein, J., Hackel, U., Schara, P., Washausen, P., and Wagner, F. (1976),Abstr. 5th Intern. Ferment. Symp. Berlin., 295.

  8. Klein, J., Hackel, U., Schara, P., Washausen, P., Wagner, F. and Martin, C. K. A. (1978),Enzyme Eng. 4, 339.

    CAS  Google Scholar 

  9. Satterfield, C. N. (1970),Mass Transfer in Heterogeneous Catalysis, Cambridge, Mass.

  10. Aris, R. (1975),The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, vol. 1, Clarendon Press, Oxford.

    Google Scholar 

  11. Washausen, P. (1975), Diplomarbeit, Institut f. chemische Technologie der Technischen Univerität Braunschweig.

  12. Nei, N., Enatsu, T., and Terui, G. (1973),J. Ferm. Techn. 51, 1.

    CAS  Google Scholar 

  13. Krasuk, J. H., and Smith, J. M. (1965),Ind. Eng. Chem. Fund. 4, 102.

    Article  CAS  Google Scholar 

  14. Moo-Young, M., and Kobayashi, T. (1972),Can. J. Chem. Eng.,50, 162.

    Article  CAS  Google Scholar 

  15. Bischoff, K. B. (1965),AIChEJ.,11, 351.

    Article  CAS  Google Scholar 

  16. Na, H. S., and Na, T. Y. (1970),Mathem. Biosci. 6, 25.

    Article  Google Scholar 

  17. Fink, D. J., Na, T. J., and Schultz, J. S. (1973),Biotech. Bioeng. 15, 879.

    Article  CAS  Google Scholar 

  18. Wadiak, D. T., and Carbonell, R. G. (1975),Biotech. Bioeng. 17, 1761.

    Article  CAS  Google Scholar 

  19. Daynes, H. A. (1920).Proc. Roy. Soc. (London) A97, 286.

    Article  CAS  Google Scholar 

  20. Neujahr, H. J., Lindsjö, S., and Varga, J. M. (1974),Antonie van Leuwenhoek 40, 209.

    Article  CAS  Google Scholar 

  21. Klein, J., and Hackel, U. (1979),ACS Symp. Series 106, 101.

    Article  CAS  Google Scholar 

  22. Erdös, E., and Nyvld, J. A. (1958),Collect. Czechoslov. Chem. Comm. 23, 579.

    Google Scholar 

  23. White, M. L., and Dorion, G. H. (1961),J. Polym. Sci. 55, 731.

    Article  CAS  Google Scholar 

  24. Landolt-Börnstein, Zahlenwerte und Funktionen, 6. Auflage, Vol. II (1969).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, J., Schara, P. Entrapment of living microbial cells in covalent polymeric networks. Appl Biochem Biotechnol 6, 91–117 (1981). https://doi.org/10.1007/BF02779243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02779243

Index Entries

Navigation