Advertisement

Applied Biochemistry and Biotechnology

, Volume 17, Issue 1–3, pp 279–293 | Cite as

Thermotolerant yeast for simultaneous saccharification and fermentation of cellulose to ethanol

  • Diane D. Spindler
  • Charles E. Wyman
  • Ali Mohagheghi
  • Karel Grohmann
Session 2 Original Papers

Abstract

Ten promising microbial strains were screened for glucose fermentation over the temperature range of 37–47°C, and five temperature-tolerant yeasts (Saccharomyces cerevisiae SERI strain (D5A),S. uvarum, andCandida generaacidothermophilium, brassicae, andlusitaniae), were chosen for SSF evaluation on Sigmacell-50 cellulose with Genencor 150 L cellulase enzyme.Brettanomyces clausenii (Y-1414) was included for comparison to previous studies both by itself and in mixed culture withS. cerevisiae (D5A). Good conversion rates were achieved at temperatures as high as 43°C withC. brassicae andS. uvarum; mixed cultures of either of these yeasts with the thermotolerant cellobiose fermenting yeastC. lusitaniae achieved higher rates and yields than any of the three yeasts alone. However, the mixed culture ofB. clausenii andS. cerevisiae at 37°C achieved as high conversion rates and higher yields than any of the other yeasts tested.

Index Entries

Simultaneous saccharification and fermentation (SSF) yeast screening thermotolerant yeasts mixed cultures cellulose conversions and rates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Takagi, M., Abe, S., Suzuki, S., Emert, G. H., and Yata, N. (1977),A Method for Production of Alcohol Directly from Cellulose Using Cellulase and Yeast, Proc., Bioconv. Symp., IIT, Delhi, India, 551–571.Google Scholar
  2. 2.
    Wyman, C. E., Spindler, D. D., Grohmann, K., and Lastick, S. M. (1986),Simultaneous Saccharification and Fermentation of Cellulose with the Yeast Brettanomyces clausenii, Biotechnol. Bioeng.,17, 221–238.Google Scholar
  3. 3.
    Blotkamp, P. J., Takagi, M., Pemberton, M. S., and Emert, G. H. (1978),Enzymatic Hydrolysis of Cellulose and Simultaneous Fermentation to Ethanol, AICHE Symp. Ser. 74(181), 85–90.Google Scholar
  4. 4.
    Deshapande, V., Sivaraman, H., and Rao, M. (1983), Simultaneous Saccharification and Fermentation of Cellulose to Ethanol Using Penicillium funiculosum and Free or Immobilized Saccharomyces uvarum Cells,Biotechnol. Bioeng. 25(6), 1679–1682.CrossRefGoogle Scholar
  5. 5.
    Pemberton, M. S., Brown, R. D., Jr., and Emert, G. H. (1980), The Role of b-Glucosidase in the Bioconversion of Cellulose to Ethanol,Can. J. Chem. Eng.,58, 723–729.CrossRefGoogle Scholar
  6. 6.
    Takagi, M. (1986), Inhibition of Cellulase by Fermentation Products,Biotechnol. Bioeng. 28, 115–118.CrossRefGoogle Scholar
  7. 7.
    Becker, D. K., Blotkamp, P. J., and Emert, G. H. (1980), Pilot Scale Conversion of Cellulose to Ethanol,Am. Chem. Soc., Div. Fuel Chem. Prepr. 25(4), 279–308.Google Scholar
  8. 8.
    Becker, D. K., Blotkamp, P. J., and Emert, G. H. (1981), Pilot Scale Conversion of Cellulose to Ethanol, inFuels from Biomass and Wastes, Klass, D. L., and Emert, G. H. (eds.), Ann Arbor Science Publ., Ann Arbor, MI ch. 20, pp. 375–391.Google Scholar
  9. 9.
    Blotkamp, P. J., Takagi, M., Pemberton, M. S., and Emert, G. H. (1978),Enzymatic Hydrolysis of Cellulose and Simultaneous Fermentation to Ethanol, AICHE Symp. Ser. 74(181), 85–90.Google Scholar
  10. 10.
    Rivers, D. B., Zanin, G. M., and Emert, G. H. (1984),Evaluation of Sugar Cane Bagasse and Rice Straw as Process Substrates for the Production of Ethyl Alcohol, Proc. Ark. Acad. Sci. 38, 95–96.Google Scholar
  11. 11.
    Shoemaker, S. P. (1984), The Cellulase System of Trichoderma reesei: Trichoderma Strain Improvement and Expression of Trichoderma Cellulases in Yeast,Biotech 84, pp. 593–600.Google Scholar
  12. 12.
    Gonde, P., Blondin, B., Leclerc, M., Ratomahenina, R., Arnaud, A., and Galzy, P. (1984), Fermentation of Cellodextrins by Different Yeast Strains,Appl. Environ. Microb. 48 (2), pp. 265–269.Google Scholar
  13. 13.
    Lastick, S. M., Spindler D. D., and Grohmann, K. (1983), Fermentation of Soluble Cello-oligosaccharides by Yeasts,Wood and Agric. Residues, pp. 239–251.Google Scholar
  14. 14.
    Lastick, S. M., Spindler, D., Terrell, S., and Grohmann, K. (1984), Simultaneous Saccharification and Fermentation of Cellulose,Biotech 84, pp. 277–289.Google Scholar
  15. 15.
    Ghosh, T. K., Roychoudhury, P. K., and Ghosh, P. (1984), Simultaneous Saccharification and Fermentation (SSF) of Lignocellulosics to Ethanol Under Vacuum Cycling and Step Feeding,Biotechnol. Bioeng. 26(6), 377–381.CrossRefGoogle Scholar
  16. 16.
    Spangler, D. J., and Emert, G. H. (1986),Simultaneous Saccharification/Fermentation with Zymonomas mobilis, Biotechnol. Bioeng. 28, 115–188.CrossRefGoogle Scholar
  17. 17.
    Viikari, L., Nybergh, P., and Linko, M. (1981), Hydrolysis of Cellulose by Trichoderma reesei Enzyme and Simultaneous Production of Ethanol by Zymonomas Sp.,Adv. Biotechnol., vol. II, Mao-Young, M., and Robinson, C. W., eds., Pergamon, NY, pp. 137–142.Google Scholar
  18. 18.
    Saddler, J. N., Hoagan, C., Chan, M. K.-H., and Louis-Seize, G. (1982), Ethanol Fermentations of Enzymatically Hydrolyzed Pretreated Wood Fractions Using Trichoderma cellulase,Zymonomas mobilis, andSaccharomyces cerevisiae, Can. J. Microbiol. 28, 1311.CrossRefGoogle Scholar
  19. 19.
    Recommendations on the Measurement of Cellulase Activities, prepared forInternatl. Union Pure Appl. Chem., Comm. Biotechnol., June 1984.Google Scholar

Copyright information

© The Humana Press Inc 1988

Authors and Affiliations

  • Diane D. Spindler
    • 1
  • Charles E. Wyman
    • 1
  • Ali Mohagheghi
    • 1
  • Karel Grohmann
    • 1
  1. 1.Biotechnology Research BranchSolar Energy Research InstituteGolden

Personalised recommendations