Molecular Biotechnology

, Volume 4, Issue 3, pp 213–225 | Cite as

Hybridization of DNA targets to glass-tethered oligonucleotide probes

  • Wanda G. Beattie
  • Lin Meng
  • Saralinda L. Turner
  • Rajender S. Varma
  • Dat D. Dao
  • Kenneth L. Beattie


Hybridization of nucleic acids to surface-tethered oligonucleotide probes has numerous potential applications in genome mapping and DNA sequence analysis. In this article, we describe a simple standard protocol for routine preparation of terminal amine-derivatized 9-mer oligonucleotide arrays on ordinary microscope slides and hybridization conditions with DNA target strands of up to several hundred bases in length with good discrimination against mismatches. Additional linker arms separating the glass surface from the probe sequence are not necessary. The technique described here offers a powerful tool for the detection of specific genetic mutations.

Index Entries

Genosensors sequencing by hybridization oligonucleotide arrays DNA chips genome mapping DNA sequencing DNA probes mutation detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saiki, R. K., Walsh, P. S., Levenson, C. H., and Erlich, H. A. (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes.Proc. Natl. Acad. Sci. USA 86, 6230–6234.PubMedCrossRefGoogle Scholar
  2. 2.
    Khrapko, K. R., Lysov, Y. P., Khorlyn, A. A., Shick, V. V., Florentiev, V. L., and Mirzabekov, A. D. (1989) An oligonucleotide hybridization approach to DNA sequencing.FEBS Lett.256, 118–122.PubMedCrossRefGoogle Scholar
  3. 3.
    Maskos, U. and Southern, E. M. (1992) Parallel analysis of oligodeoxyribonucleotide (oligonucleotide) interactions. I. Analysis of factors influencing oligonucleotide duplex formation.Nucleic Acids Res.20, 1675–1678.PubMedCrossRefGoogle Scholar
  4. 4.
    Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., and Fodor, S. P. A. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis.Proc. Natl. Acad. Sci. USA 91, 5022–5026.PubMedCrossRefGoogle Scholar
  5. 5.
    Eggers, M. D., Hogan, M. E., Reich, R. K., Lamture, J. B., Beattie, K. L., Hollis, M. A., Ehrlich, D. J., Kosicki, B. B., Shumaker, J. M., Varma, R. S., Burke, B. E., Murphy, A., and Rathman, D. D. (1993) Genosensors: microfabricated devices for automated DNA sequence analysis, inAdvances in DNA Sequencing Technology, Proc. SPIE (Keller, R., ed., vol. 1891), pp. 13–26.Google Scholar
  6. 6.
    Lamture, J. B., Beattie, K. L., Burke, B. E., Eggers, M. D., Ehrlich, D. J., Fowler, R., Hollis, M. A., Kosicki, B. B., Reich, R. K., Smith, S. R., Varma, R. S., and Hogan, M. E. (1994) Direct detection of nucleic acid hybridization on the surface of a charge coupled device.Nucleic Acids Res. 22, 2121–2125.PubMedCrossRefGoogle Scholar
  7. 7.
    Matson, R. S., Rampal, J. B., and Coassin, P. J. (1994) Biopolymer synthesis on polypropylene supports.Anal. Biochem. 217, 306–310.PubMedCrossRefGoogle Scholar
  8. 8.
    Bains, W. and Smith, G. C. (1988) A novel method for nucleic acid sequence determination.J. Theor. Biol. 135, 303–307.PubMedCrossRefGoogle Scholar
  9. 9.
    Khrapko, K. R., Lysov, Y. P., Khorlin, A. A., Ivanov, I. B., Yershov, G. M., Vasilenko, S. K., Florentiev, V. L., and Mirzabekov, A. D. (1991) A method for DNA sequencing by hybridization with oligonucleotide matrix.DNA Sequence 1, 375–388.PubMedCrossRefGoogle Scholar
  10. 10.
    Southern, E. M., Maskos, U., and Elder, J. K. (1992) Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models.Genomics 13, 1008–1017.PubMedCrossRefGoogle Scholar
  11. 11.
    Bains, W. (1993) Characterizing and sequencing cDNAs using oligonucleotide hybridization.DNA Sequence 4, 143–150.PubMedCrossRefGoogle Scholar
  12. 12.
    Mirzabekov, A. D. (1994) DNA sequencing by hybridization—a megasequencing method and a diagnostic tool?Trends Biotechnol. 12, 27–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Hoheisel, J. D. (1994) Application of hybridization techniques to genome mapping and sequencing.Trends Genet. 10, 79–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Wehnert, M. S., Matson, R. S., Rampal, J. B., Coassin, P. J., and Caskey, C. T. (1994) A rapid scanning strip for tri- and dinucleotide short tandem repeats.Nucleic Acids Res. 22, 1701–1704.PubMedCrossRefGoogle Scholar
  15. 15.
    Matteucci, M. D. and Caruthers, M. H. (1981) Synthesis of deoxyoligonucleotides on a polymer support.J. Am. Chem. Soc. 103, 3185–3191.CrossRefGoogle Scholar
  16. 16.
    Beattie, K. L., Logsdon, N. J., Anderson, R. S., Espinosa-Lara, J. M., Maldonado-Rodriguez, R., and Frost, J. D. III. (1988) Gene synthesis technology: recent developments and future prospects.Appl. Biochem. Biotechnol. 10, 510–521.Google Scholar
  17. 17.
    Beattie, K. L. and Fowler, R. F. (1991) Solid phase gene assembly.Nature 352, 548,549.CrossRefGoogle Scholar
  18. 18.
    Beattie, K. L. and Hurst, G. D. (1994) Synthesis and use of oligonucleotide libraries, inInnovation and Perspectives in Solid Phase Synthesis: Peptides, Proteins and Nucleic Acids—Biological and Biomedical Applications (Epton, R., ed.), West Midlands, England, UK, pp. 69–76.Google Scholar
  19. 19.
    Maskos, U. and Southern, E. M. (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridisation properties of oligonucleotides synthesizedin situ.Nucleic Acids Res. 20, 1679–1684.PubMedCrossRefGoogle Scholar
  20. 20.
    Doktycz, M. J., Morris, M. D., Dormady, S. J., Beattie, K. L., and Jacobson, K. B. (1994) Optical melting of 120 octamer DNA duplexes. Effects of base pair location and nearest neighbors on thermal stability.J. Biol. Chem. 270, 8439–8445.Google Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Wanda G. Beattie
    • 1
  • Lin Meng
    • 1
  • Saralinda L. Turner
    • 1
  • Rajender S. Varma
    • 1
  • Dat D. Dao
    • 1
  • Kenneth L. Beattie
    • 1
  1. 1.DNA Technology LaboratoryHouston Advanced Research CenterThe Woodlands

Personalised recommendations