Skip to main content
Log in

Effects of low-molecular-weight aluminum complexes on brain tissue calcium homeostasis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The in vitro effects of low-molecular-weight aluminum complexes (citrate, lactate, and ATP complex) on the Ca2+ uptake and aluminum-induced lipid peroxidation of brain tissue show that the modification of the calcium homeostasis is determined by the nature of the ligand and that there is no correlation between the aluminum-induced lipid peroxidation and the Ca2+ uptake. The same characteristics have been shown by a similar study performed with Ehrlich carcinoma cells. The electrophoretic analyses of the aluminum lactate-albumin and aluminum lactate-ATP interactions indicate an aluminum transfer from the lactate to the albumin and ATP ligands. The increased Ca2+ uptake when ATP is present in the incubation medium with aluminum citrate and aluminum lactate corroborates the suggested mediator role of ATP in cellular calcium homeostasis modification induced by iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Anghileri, Effects of Fe3+-tumor cell interaction on Ca2+-uptake by Ehrlich ascites tumor cells,Cell Calcium 12, 371–374 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. L. J. Anghileri, Ehrlich tumor cells: Ca2+-uptake modification by aluminum lactate,Cell Calcium 13, 277–279 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. L. J. Anghileri, P. Maincent, A. Cordova Martinez, and P. Thouvenot, The role of ATP as a mediator in the action of iron complexes on cellular calcium homeostasis.Biol. Trace Element Res. 46, 103–111 (1994).

    Article  CAS  Google Scholar 

  4. L. J. Anghileri, P. Thouvenot, and A. Bertrand, Effects of iron complexes on brain calcium homeostasis,Ann. Clin. Lab. Sci. 27, 210–215 (1997).

    PubMed  CAS  Google Scholar 

  5. J. M. C. Gutteridge, Ferrous ion-EDTA-stimulated phospholipid peroxidation,Biochem. J. 224, 697–701 (1984).

    PubMed  CAS  Google Scholar 

  6. A. D. Horton and P. F. Thomason, Ion exchange—spectrophotometric determination of aluminum,Anal. Chem. 28, 1326–1329 (1956).

    Article  CAS  Google Scholar 

  7. J. E. Gorman and F. M. Clydesdale, Thermodynamic and kinetic stability constants of selected carboxylic acids and iron,J. Food Sci. 49, 500–504 (1984).

    Article  CAS  Google Scholar 

  8. L. J. Anghileri, P. Maincent, A. Cordova Martinez, and J. Escanero, Effects of albumin and adenosine phosphates on iron transfer from ferric lactate,Biol. Trace Element Res. 40, 83–88 (1994).

    CAS  Google Scholar 

  9. M. Favarato, P. Zatta, M. Perazzolo, L. Fontana, and M. Nicolini, Aluminum influence on the permeability of blood-brain barrier to (14C)sucrose in rats.Brain Res. 569, 330–335 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. R. A. Yokel, V. Lidums, P. J. McNamara, and V. Ungerstedt, Aluminum distribution into brain and liver of rats and rabbits following intravenous aluminum lactate or citrate: a microdialysis study,Toxicol. Appl. Pharmacol. 107, 153–163 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. S. K. Jonas and P. A. Riley, The effect of ligands on the uptake of iron by cells in culture.Cell Biochem. Funct. 9, 245–253 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. M. A. Burnatowska-Hledin and G. H. Mayor, The effects of aluminum loading on selected tissue calcium and magnesium concentration in rats,Biol. Trace Element Res. 6, 531–535 (1984).

    CAS  Google Scholar 

  13. P. R. S. Kodavanti, W. R. Mundy, H. A. Tilson and G. J. Harry, Effects of selected neuroactive compounds on calcium transporting systems in rat cerebellum and on survival of cerebellar granule cells,Toxicologist 12, 128–132 (1992).

    Google Scholar 

  14. L. J. Anghileri, Effects of complexed iron and aluminum on brain calcium,Neurotoxicology 13, 475–478 (1992).

    PubMed  CAS  Google Scholar 

  15. L. J. Anghileri, P. Maincent, and P. Thouvenot, Modification of in vivo Ca2+-uptake by parenterally administered aluminum complexes,In Vivo 8, 237–240 (1994).

    PubMed  CAS  Google Scholar 

  16. R. N. MacBurney and I. R. Neering, Neuronal calcium homeostasis,Trends Neuro-Sci. 10, 164–169 (1987).

    Article  Google Scholar 

  17. L. J. Anghileri, M. Heidbreder, G. Weiler, and R. Dermietzel, Liver tumors induced by 4-dimethylaminoazobenzene. Experimental basis for a chemical carcinogenesis concept,Arch. Geschwultsforsch 46, 639–646 (1976).

    CAS  Google Scholar 

  18. L. J. Anghileri, M. Heidbreder, G. Weiler, and R. Dermietzel, Hepatocarcinogenesis by thioacetamide: correlations of histological and biochemical changes, and possible role of cell injury,Exp. Cell Biol. 45, 34–47 (1977).

    PubMed  CAS  Google Scholar 

  19. L. J. Anghileri, D. Stavrou and W. Weidenbach, Phospholipids and calcification in human intracranial tumors,Arch. Geschwultsforsch. 47, 330–334 (1977).

    CAS  Google Scholar 

  20. M. Yasui, T. Kihira, and K. Ota, Calcium, magnesium and aluminum concentrations in Parkinson’s disease,Neurotoxicology 13, 593–600 (1992).

    PubMed  CAS  Google Scholar 

  21. E. Carafoli, Intracellular calcium homeostasis,Annu. Rev. Biochem. 56, 395–433 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. M. Deleers, Cationic atmosphere and cation competition binding at negative charged membranes. Pathological implications of aluminum,Res. Commun. Chem. Pathol. Pharmacol. 49, 277–294 (1981).

    Google Scholar 

  23. P. Nicotera and S. Orrenius, Calcium ions in necrotic and apoptotic cell death, inNeurodegeneration and Neuroprotection in Parkinson’s Diease, C. W. Olanov, P. Jenner, and M. Youdim, eds, Academic, London, p. 155 (1996).

    Google Scholar 

  24. L. J. Anghileri, P. Maincent, and P. Thouvenot, Role of lipid peroxidation in iron-induced calcium overload,Biol. Trace Element Res. 52, 163–169 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anghileri, L.J., Thouvenot, P. & Bertrand, A. Effects of low-molecular-weight aluminum complexes on brain tissue calcium homeostasis. Biol Trace Elem Res 63, 205–212 (1998). https://doi.org/10.1007/BF02778938

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02778938

Index Entries

Navigation