Advertisement

Botryococcus braunii an unusual hydrocarbon-producing alga

  • Fred R. Wolf
Review

Abstract

The colonial green algaBotryococcus braunii has been proposed as a source of renewable liquid fuel principally because of its ability to accumulate large quantities of hydrocarbon and form prodigious natural blooms. A curious feature of the alga is that the type of hydrocarbon produced is apparently related to physiological status. Active state colonies produce unbranched olefins (largely C27:2, C29:2, C29:3, and C31:2) that have been reported to comprise up to 32% of the dry weight. In contrast, resting state colonies produce unusual branched olefins (general formula C n H2n−10;n=30–37) that appear to be of terpenoid origin. This “botryococcene fraction” has been shown to comprise from 27 to 86% of the dry weight in natural collections.

Although these and other considerations may argue on behalf of large-scale cultivation, several problems require further investigation. For example, little is known about bloom formation and maintenance, growth and physiology of resting state colonies, or the mechanism of physiological interconversion. There is also a need to acquire and investigate new isolates, for much experimental work has utilized a handful of active-state isolates long entrained to laboratory culture. Furthermore, currently available data suggest that the conditions required to expedite the alga's typically sluggish growth would increase production costs and likely engender the growth of more competitive phytoplankton.

Present considerations do not point optimistically to the widespread use ofBotryococcus as a renewable fuel source, although a long-range potential for the production of specific industrial feedstocks may exist.

Index Entries

Algae, hydrocarbon production by algae, oil production by Botryococcus braunii, as a renewable hydrocarbon source Botryococcus braunii, as a renewable liquid fueld source Botryococcus braunii, hydrocarbon production by Botryococcus braunii, oil production by hydrocarbon biosynthesis hydrocarbon biomass 

References

  1. 1.
    Brown, A. C., Knights, B. A., and Conway, E. (1969),Phytochemistry 8, 543.CrossRefGoogle Scholar
  2. 2.
    Wake, L. V., and Hillen, L. W. (1981),Aust. J. Mar. Freshwater Res. 32, 353.CrossRefGoogle Scholar
  3. 3.
    Hillen, L. W., and Warren, D. R. (1976),Mechanical Engineering Report 148, Aeronautical Research Labs., Melbourne, Australia.Google Scholar
  4. 4.
    Hillen, L. W., and Wake, L. V. (1979), AIE National Conference, Newcastle, 5–9 Feb. N18–N25.Google Scholar
  5. 5.
    Largeau, C., Casadevall, E., Dif, D., and Berkaloff, C. (1980), inEnergy from Biomass, 1st E. C. Conference, Palz, W., Chartier, P., and Hall, D. O., ed., Applied Science Publishers, London.Google Scholar
  6. 6.
    Largeau, C., Casadevall, E., and Dif, D., Int. Conf. Energy from Biomass, Brighton, 1980.Google Scholar
  7. 7.
    Largeau, C., Metzger, P., Dif, D., Paylan, J., and Berkaloff, C., CCE Proceedings of the First Coordination Meeting of Contractors, Amsterdam, 1980.Google Scholar
  8. 8.
    Bachofen, R. (1982),Experientia 38, 47.CrossRefGoogle Scholar
  9. 9.
    Blackburn, K. B. (1936),Trans. Roy. Soc. Edinburgh 58, 841.Google Scholar
  10. 10.
    Niklas, K. J. (1976),Brittonia 28, 113.CrossRefGoogle Scholar
  11. 11.
    Schnepf, E., and Koch, W. (1978),Bot. Jahrb. Syst. Pflanzengesch. Pflanzengeogr. 99, 370.Google Scholar
  12. 12.
    Largeau, C., Casadevall, E., Berkaloff, C., and Dhamelincourt, P. (1980),Phytochemistry 19, 1043.CrossRefGoogle Scholar
  13. 13.
    Wolf, F. R., and Cox, E. R. (1981),J. Phycol. 17, 395.CrossRefGoogle Scholar
  14. 14.
    Chodat, M. R. (1896),J. Bot. Genève 10, 333.Google Scholar
  15. 15.
    Temperley, B. N. (1936),Trans. Roy. Soc. Edinburgh 58, 855.Google Scholar
  16. 16.
    Cane, R. F., and Albion, P. R. (1973),Geochim. Cosmochim. Acta 37, 1543.CrossRefGoogle Scholar
  17. 17.
    Largeau, C., Casadevall, E., and Berkaloff, C. (1980),Phytochemistry 19, 1081.CrossRefGoogle Scholar
  18. 18.
    Berkaloff, C., Casadevall, E., Largeau, C., Metzer, P., Peracca, S., Virlet, J. (1983),Phytochemistry 22, 389.CrossRefGoogle Scholar
  19. 19.
    Belcher, J. H. (1968),Arch. Microbiol. 61, 335.Google Scholar
  20. 20.
    Traverse, A. (1955),Micropaleontology 1, 343.CrossRefGoogle Scholar
  21. 21.
    Cane, R. F. (1977),Trans. Roy. Soc. South Aust. 101, 153.Google Scholar
  22. 22.
    Kraemer, A. J., and Thorne, H. M. (1951), U.S. Bureau of Mines, Report of Investigations No. 4796.Google Scholar
  23. 23.
    Moldowan, J. M., and Seifert, W. K. (1980),J. Chem. Soc., Chem. Commun., 912.Google Scholar
  24. 24.
    Zalessky, M. D. (1926),Rev. Gen. Bot. 38, 31.Google Scholar
  25. 25.
    Swale, E. M. F. (1968),Brit. Phycol. Bull. 3, 441.CrossRefGoogle Scholar
  26. 26.
    Wake, L. V., and Hillen, L. W. (1980),Biotechnol. Bioeng. 22, 1637.CrossRefGoogle Scholar
  27. 27.
    Gilson, H. C. (1964),Vehr. Int. Ver. Theor. Angew. Limnol. 15, 112.Google Scholar
  28. 28.
    Swain, F. M., and Gilby, J. M. (1964),Pubbl. Stn. Zool. Napoli 33, (Suppl.), 361.Google Scholar
  29. 29.
    Masters, M. J. (1971),Can. J. Bot. 49, 1479.Google Scholar
  30. 30.
    Green, J., Corbet, S. A., and Betney, E. (1974),J. Zool. 173, 199.CrossRefGoogle Scholar
  31. 31.
    Bayly, I. A. E., Ebsworth, E. P., and Wan, H. F. (1975),Aust. J. Mar. Freshwater Res. 26, 1.CrossRefGoogle Scholar
  32. 32.
    Gelpi, E., Oró, J., Schneider, H. J., and Bennett, E. O. (1968),Science 161, 700.CrossRefGoogle Scholar
  33. 33.
    Gelpi, E., Schneider, H., Mann, J., and Oŕo, J. (1970),Phytochemistry 9, 603.CrossRefGoogle Scholar
  34. 34.
    Murray, J., and Thomson, A. (1977),Phytochemistry 16, 465.CrossRefGoogle Scholar
  35. 35.
    Knights, B. A., Brown, A. C., Conway, E., and Middleditch, B. S. (1970),Phytochemistry 9, 1317.CrossRefGoogle Scholar
  36. 36.
    Casadevall, E., Largeau, C., Metzger, P., and Paylan, J., European Congress, ESOC II, STRENSA, 1981.Google Scholar
  37. 37.
    Paylan, J., Largeau, C., and Casadevall, E., Annual Congress of “La Société-Chimique de France,” Paris, 1982.Google Scholar
  38. 38.
    Spoehr, H. A., and Milner, H. W. (1949),Plant Physiol. 24, 120.CrossRefGoogle Scholar
  39. 39.
    Aach, H. G. (1952),Arch. Mikrobiol. 17, 213.CrossRefGoogle Scholar
  40. 40.
    Collyer, D. M., and Fogg, G. E. (1955),J. Exp. Bot. 6, 256.CrossRefGoogle Scholar
  41. 41.
    Iwamoto, H., and Sugimoto, H. (1958),Bull. Agri Chem. Soc. Japan 22, 410.Google Scholar
  42. 42.
    Miller, J. D. A. (1962), inPhysiology and Biochemistry of Algae, Lewin, R. A., ed., Academic Press, NY.Google Scholar
  43. 43.
    Belcher, J. H., and Fogg, G. E. (1955),New Phytol. 54, 81.CrossRefGoogle Scholar
  44. 44.
    Wolf, F. R. (1981), PhD Thesis, Texas A & M University.Google Scholar
  45. 45.
    Maxwell, J. R., Douglas, A. G., Eglinton, G., and McCormick, A. (1968),Phytochemistry 7, 2157.CrossRefGoogle Scholar
  46. 46.
    Galbraith, M. N., Hillen, L. W., and Wake, L. V. (1981), Department of Defence, Defence Report MRL-R-836, Defence Science and Technology Organisation, Materials Research Laboratories, Melbourne, Australia.Google Scholar
  47. 47.
    Cox, R. E., Burlingame, A. L., Wilson, D. M., Eglinton, G. and Maxwell, J. R. (1973),J. Chem. Soc. Chem. Commun., 284.Google Scholar
  48. 48.
    Souček, M., Herout, V., and Šorm, F. (1961),Collect. Czech. Chem. Commun. 26, 2551.Google Scholar
  49. 49.
    Goodwin, T. W. (1971),Biochem. J. 123, 293.Google Scholar
  50. 50.
    Weete, J. D. (1976), inChemistry and Biochemistry of Natural Waxes, Kolattukudy, P. E., ed., Elsevier Amsterdam.Google Scholar
  51. 51.
    Dubinsky, Z., Berner, T., and Aaronson, S. (1978),Biotechnol. Bioeng. 8, 51.Google Scholar
  52. 52.
    Hillen, L. W., Pollard, G., Wake, L. V., and White, N. (1982),Biotechnol. Bioeng. 24, 193.CrossRefGoogle Scholar
  53. 53.
    McGarry, M. G., and Tongkasame, C. (1971),Water Pollut. Control Fed. 43, 824.Google Scholar

Copyright information

© the Humana Press Inc 1983

Authors and Affiliations

  • Fred R. Wolf
    • 1
  1. 1.Lawrence Berkeley Laboratory, Laboratory of Chemical BiodynamicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations