Applied Biochemistry and Biotechnology

, Volume 8, Issue 3, pp 213–226 | Cite as

The use of an immobilized enzyme nylon tube reactor incorporating a four enzyme system for creatinine analysis

  • Ron Ginman
  • Janet S. Colliss
  • John M. Knox
Original Articles


A single immobilized enzyme nylon tube reactor was produced incorporating a four enzyme system for the analysis of creatinine.

The enzyme activity ratios in the coupling solution used to prepare the reactor were found to be of extreme importance in governing the activity of the latter.

The reactor was incorporated into a continuous flow analysis system used to assay creatinine in urine samples and the results were correlated with a manual technique employing the same enzyme system in solution.

The precision, correlation, high specificity, simplicity, and speed of the analysis were concluded to be factors in favor of the method's suitability for urine creatinine determinations.

Index Entries

Immobilized enzyme reactor, for creatinine analysis reactor, creatinine analysis by immobilized enzyme nylon tube reactor, immobilized enzyme enzyme reactor, creatinine analysis using immobilized creatinine analysis, immobilized enzyme reactor for 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jaffé, M. (1886),Z. Physiol. Chem. 10, 391.Google Scholar
  2. 2.
    Swain, R. R., and Briggs, S. L. (1977),Clin. Chem. 23, 1340.Google Scholar
  3. 3.
    Daugherty, N. A., Hammond, K. B., and Osberg, I. M. (1978),Clin. Chem. 24, 392.Google Scholar
  4. 4.
    Soldin, S. J., Henderson, L., and Hill, G. J. (1978),Clin. Biochem. 11, 82–86.CrossRefGoogle Scholar
  5. 5.
    Young, D. S., Pestaner, L. C., and Gibberman, V. (1975),Clin. Chem. 21, 286D.Google Scholar
  6. 6.
    Fabiny, D. L., and Ertingshausen, G. (1971),Clin. Chem. 17, 696.Google Scholar
  7. 7.
    Lustgarten, J. A., and Wenk, R. E. (1972),Clin. Chem. 18, 1419.Google Scholar
  8. 8.
    Bowers, L. D. (1980),Clin. Chem. 26, 551.Google Scholar
  9. 9.
    Bowers, L. D., and Wong, E. T. (1980),Clin. Chem. 26, 555.Google Scholar
  10. 10.
    Soldin, S. J., and Hill, G. J. (1978),Clin. Chem. 24, 747.Google Scholar
  11. 11.
    Spierto, R. W., MacNeil, M. L., Culbreth, P., et al. (1980),Clin. Chem. 26, 286.Google Scholar
  12. 12.
    Thomson, H., and Rechnitz, G. A. (1974),Anal. Chem. 46, 246.CrossRefGoogle Scholar
  13. 13.
    Moss, G. A., Bondar, R. J. L., and Buzzelli, D. M. (1975),Clin. Chem. 21, 1422.Google Scholar
  14. 14.
    Jaynes, P. K., Feld, R. D., and Johnson, G. (1982),Clin. Chem. 28, 114.Google Scholar
  15. 15.
    Sundaram, P. V., and Igloi, M. P. (1979),Clin. Chem. Acta 94, 295.CrossRefGoogle Scholar
  16. 16.
    Sundaram, P. V., and Hornby, W. E. (1970),FEBS Lett. 10, 325.CrossRefGoogle Scholar
  17. 17.
    Meerwin, H. (1966),Org. Synth. 46, 120.Google Scholar
  18. 18.
    Morris, D. L., Campbell, J., and Hornby, W. E. (1975),Biochem. J. 147, 593.Google Scholar
  19. 19.
    Noy, G. A. (1979), PhD Thesis. The Use of Immobilized Enzymes in Continuous Flow Analysis.Google Scholar
  20. 20.
    Broughton, P. M. J., Gowenlock, A. H., McCormack, J. J., and Neill, D. W., (1974),Ann. Clin. Biochem. 11, 207.Google Scholar
  21. 21.
    Nernst, W. Z. (1904),Z. Phys. Chem. 47, 52.Google Scholar
  22. 22.
    Tonks, D. B. (1963),Clin. Chem. 9, 217.Google Scholar

Copyright information

© Humana Press Inc 1983

Authors and Affiliations

  • Ron Ginman
    • 1
  • Janet S. Colliss
    • 2
  • John M. Knox
    • 2
  1. 1.Department of PharmacyBrighton PolytechnicBrightonEngland
  2. 2.Department of Clinical ChemistryWorthing HospitalWorthingEngland

Personalised recommendations