Advertisement

Biological Trace Element Research

, Volume 57, Issue 2, pp 139–145 | Cite as

Zinc attenuation of GDP binding to brown adipocytes mitochondria in genetically obese (ob/ob) mice

  • Ming-Der Chen
  • Pi-Yao Lin
  • Piin-Sheng Chen
  • Vie Cheng
  • Wen-Han Lin
Article

Abstract

In this study, we investigate the in vitro effect of zinc addition on guanosine diphosphate (GDP) binding to mitochondria in brown adipocytes of genetically obese (ob/ob) mice. Interscapular brown adipocytes of male mice (obese; lean) at 4 and 12 wk of age were incubated with 0, 50, 100, or 200 μM zinc sulfate. Mitochondria were then isolated and their GDP binding capacities were measured. The GDP-binding capacities of ob/ob mice were lower than lean mice, with or without zinc addition, in both age groups (p<0.05). Zinc addition did not have any significant effect on GDP binding in lean mice. GDP binding decreased with increasing zinc addition in ob/ob mice, and this attenuation was more predominant in 12-wk old ob/ob mice. Moreover, we found that high magnesium addition (5 mM) increased GDP binding in lean mice, but this effect was not significant in ob/ob mice. This study reveals that brown adipose tissue thermogenesis in ob/ob mice could be greatly attenuated by zinc addition, suggesting that zinc may play a regulatory role in obesity.

Index Entries

Zinc magnesium brown adipocytes GDP binding obesity ob/ob mice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Chen, P. Y. Lin, W. H. Lin, and V. Cheng, Zinc in hair and serum of obese individuals in Taiwan,Am. J. Clin. Nutr. 48, 1307–1309 (1988).PubMedGoogle Scholar
  2. 2.
    G. Di-Martino, M. G. Matera, B. De-Martino, C. Vacca, S. Di-Martino, and F. Rossi, Relationship between zinc and obesity,J. Med. 24, 177–183 (1993).PubMedGoogle Scholar
  3. 3.
    N. Begin-Heick, M. Daple-Scott, J. Rowe, and M. M. Heick, Zinc supplementation attenuates insulin secretory activity in pancreatic islets of the ob/ob mouse,Diabetes 34, 179–184 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    M. L. Kennedy and M. L. Failla, Zinc metabolism in genetically obese (ob/ob) mice,J. Nutr. 117, 886–893 (1987).PubMedGoogle Scholar
  5. 5.
    W. H. Lin, M. D. Chen, and P. Y. Lin, Investigation of the profile of selected trace metals in genetically obese (ob/ob) and lean (+/?) mice,J. Formosan Med. Assoc. 91, s27-s33 (1992).PubMedGoogle Scholar
  6. 6.
    P. J. Collipp, New development in medical therapy of obesity: thyroid and zinc,Pediatr. Ann. 13, 465–472 (1984).PubMedGoogle Scholar
  7. 7.
    M. D. Chen, W. H. Lin, and P. Y. Lin, Zinc sulfate and thyroxine treatment on the obese patients,Chin. Med. J. 48, 210–216 (1991).Google Scholar
  8. 8.
    M. D. Chen, P. Y. Lin, V. Cheng, and W. H. Lin, Zinc supplementation aggravates body fat accumulation in genetically obese mice and dietary-obese mice,Biol. Trace Element Res. 52, 125–132 (1996).CrossRefGoogle Scholar
  9. 9.
    P. Y. Lin, S. J. Liou, M. D. Chen, V. Cheng, P. Alexander, and W. H. Lin, Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice,Int. J. Obesity 19 (Suppl. 2), 63 (1995).Google Scholar
  10. 10.
    N. J. Rothwell and M. J. Stock, Brown adipose tissue: does it play a role in the development of obesity,Diabetes Metab. Rev. 4, 595–601 (1988).PubMedGoogle Scholar
  11. 11.
    J. Himms-Hagen, Brown adipose tissue thermogenesis: interdisciplinary studies,FASEB J. 4, 2890–2898 (1990).PubMedGoogle Scholar
  12. 12.
    G. Paolisso and E. Ravussin, Intracellular magnesium and insulin resistance: results in Pima Indians and Caucasians,J. Clin. Endocrinol. Metab. 80, 1382–1385 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    T. W. Balon, J. L. Gu, Y. Tokuyama, A. P. Jasman, and J. Nadler, Magnesium supplementation reduces development of diabetes in a rat model of spontaneous NIDDM,Am. J. Physiol. 269, E745-E752 (1995).PubMedGoogle Scholar
  14. 14.
    A. G. Swick and R. W. Swick, Changes in GDP binding to brown adipose tissue mitochondria and the uncoupling protein,Am. J. Physiol. 255, E865-E870 (1988).PubMedGoogle Scholar
  15. 15.
    J. N. Fain, N. Reed, and R. Saperstein, The isolation and metabolism of brown fat cells,J. Biol. Chem. 242, 1887–1894 (1967).PubMedGoogle Scholar
  16. 16.
    F. Denizot and R. Lang, Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability,J. Immunol. Methods 89, 271–277 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    B. Cannon and O. Lindberg, Mitochondria from brown adipose tissue: isolation and properties,Methods Enzymol. 55, 65–78 (1979).PubMedGoogle Scholar
  18. 18.
    M. A. K. Markwell, S. M. Haas, N. E. Tolbert, and L. L. Bieber, Protein determination in membrane and lipoprotein samples: manual and automated procedures,Methods Enzymol. 72, 296–303 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Desautels, G. Zaror-Behrens, and J. Himms-Hagen, Increased purine nucleotide binding, altered polypeptide composition, and thermogenesis in brown adipose tissue of cold-acclimated rats,Can. J. Biochem. 56, 378–383 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    K. H. Falchuk, K. L. Hilt, and B. L. Vallee, Determination of zinc in biological samples by atomic absorption spectrometry,Methods Enzymol. 158, 422–434 (1988).PubMedGoogle Scholar
  21. 21.
    Statistical Analysis System Institute Inc.,SAS User's Guide: Statistics, SAS Institute, Cary (1985).Google Scholar
  22. 22.
    M. K. Hambidge, C. E. Casey, and N. F. Krebs, Zinc, inTrace Elements in Human and Animal Nutrition, 5th ed., W. Mertz, ed., Academic, New York, pp. 1–137 (1986).Google Scholar
  23. 23.
    J. M. Berg and Y. Shi, The galvanization of biology: a growing appreciation for the roles of zinc,Science 271, 1081–1085 (1996).PubMedCrossRefGoogle Scholar
  24. 24.
    T. A. Link, and G. von Jagow, Zinc ions inhibit the Qp center of bovine heart mitochondrial bc1 complex by blocking a protonatable group,J. Biol. Chem. 270, 25,001–25,006 (1995).Google Scholar
  25. 25.
    H. P. Roth, and M. Kirchagessner, Zinc and insulin metabolism,Biol. Trace Element Res. 3, 13–32 (1981).CrossRefGoogle Scholar
  26. 26.
    P. Faure, A. Roussel, C. Coudray, M. J. Richard, S. Halimi, and A. Favier, Zinc and insulin sensitivity,Biol. Trace Element Res. 32, 305–310 (1992).CrossRefGoogle Scholar
  27. 27.
    S. Kobayashi, Y. Gao, R. L. Ong, and C. S. Pittman, Substrate specificity of iodothyronine 5′-deiodinase in rat liver homogenates and its requirements of divalent cations in vitro,Life Sci. 16, 2231–2238 (1986).CrossRefGoogle Scholar
  28. 28.
    R. A. Reinhart, Magnesium metabolism: a review with special reference to the relationship between intracellular content and serum levels,Arch. Intern. Med. 148, 2415–2420 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Ming-Der Chen
    • 1
    • 3
  • Pi-Yao Lin
    • 2
  • Piin-Sheng Chen
    • 1
  • Vie Cheng
    • 1
  • Wen-Han Lin
    • 3
  1. 1.Graduate Institute of BiologyTunghai UniversityTaichungTaiwan, ROC
  2. 2.Department of ChemistryTunghai UniversityTaichungTaiwan, ROC
  3. 3.Division of Endocrinology and Metabolism, Department of MedicineTaichung Veterans General HospitalTaichungTaiwan, ROC

Personalised recommendations