, Volume 7, Issue 2, pp 127–143 | Cite as

Is signal transduction modulated by an interaction between heterotrimeric G-proteins and tubulin?

  • Rudravajhala Ravindra


Although it is generally accepted that tubulin plays an important role in G-protein-mediated signal transduction in a variety of systems, the mechanism of this phenomenon is not completely understood. G-protein-tubulin interaction at the cell membrane and the cytosol, and the influence of such an interaction on cellular signaling are discussed in this review article.

Because the diameter of a microtubule is 25 nm and the plasma membrane is 9–11 nm thick, it is not possible for membrane-associated tubulin to assemble into a complete microtubule in the membrane environment. However, tubulin heterodimers may be able to function in the membrane environment as individual heterodimers or as polymers arranged into short protofilaments. At the cell membrane, membrane-associated tubulin may influence hormone-receptor interaction, receptor-G-protein coupling, and G-protein-effector coupling. Structural proteins, such as tubulin, can participate in cellular signaling by communicating through physical forces. By virtue of its interaction with the submembranous network of cytoskeletal proteins, tubulin, when perturbed in one locus, can transmit large changes in conformations to other points. Thus, GTP binding to membrane-associated tubulin might lead to a conformational change in either receptors or G proteins. This may, in turn, influence the binding of an agonist to its receptor.

On the other hand, in the cell cytosol, subsequent to agonist-induced translocation of G-proteins from the membrane compartment to the cytosol, G-proteins may affect microtubule formation. In GH3 and AtT-20 cells (stably expressing TRH receptor), transiently transfected with Gqα cDNA, soluble tubulin levels decreased in Gqα-transfected GH3 and AtT-20 cells, by 33% and 52%, respectively. These results suggest that G-proteins may have a direct effect on the microtubule function in vivo.

Because tubulin and G-protein families are ubiquitous and highly conserved, an interaction between these two protein families may occur in vivo, and this, in turn, can have an impact on signal transduction. However, the physiological significance of this interaction remains to be demonstrated.

Key Words

Tubulin G-proteins colchicine paclitaxel GTP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rall, T. W., Sutherland, E. W., and Wasilait, W. O. (1956).J. Biol. Chem. 218, 483–488.PubMedGoogle Scholar
  2. 2.
    Pennington, S. R. (1994).Protein Profile 1, 169–342.PubMedGoogle Scholar
  3. 3.
    Peters, R. A. (1956).Nature 177, 426.PubMedCrossRefGoogle Scholar
  4. 4.
    Mitchison, T. J. (1992).Mol. Biol. Cell. 3, 1309–1315.PubMedGoogle Scholar
  5. 5.
    Zor, U. (1983).Endocr. Rev. 4, 1–21.PubMedGoogle Scholar
  6. 6.
    Jesaitis, A. J. and Klotz, K. N. (1993).Eur. J. Haematol. 51, 288–293.PubMedCrossRefGoogle Scholar
  7. 7.
    Omann, G. M., Allen, R. A., Bokoch, G. M., Painter, R. G., Traynor, A. E., and Sklar, L. A. (1987).Physiol. Rev. 67, 285–322.PubMedGoogle Scholar
  8. 8.
    Aderem, A. (1992).Trends Biochem. Sci. 17, 438–443.PubMedCrossRefGoogle Scholar
  9. 9.
    Ridley, A. J. (1994).BioEssays 16, 312–327.CrossRefGoogle Scholar
  10. 10.
    Burrin, J. M. (1994).Ann. Clin. Biochem. 31, 205–214.PubMedGoogle Scholar
  11. 11.
    Birnbaumer L., Abramowitz, J., and Brown, A. M. (1990).Biochim. Biophys. Acta 1031, 163–224.PubMedGoogle Scholar
  12. 12.
    Gilman, A. G. (1987).Annu. Rev. Biochem. 56, 615–649.PubMedCrossRefGoogle Scholar
  13. 13.
    Gilman, A. G. (1995).Biosci. Rep. 15, 65–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Spiegel, A. M., Shenker, A., and Weinstein, L. S. (1992).Endocr. Rev. 13, 536–565.PubMedCrossRefGoogle Scholar
  15. 15.
    Conklin, B. R. and Bourne, H. R. (1993).Cell 73, 631–641.PubMedCrossRefGoogle Scholar
  16. 16.
    Rens-Domiano, S. and Hamm, H. E. (1995).FASEB J. 9, 1059–1066.PubMedGoogle Scholar
  17. 17.
    Rodbell, M. (1992).Curr. Topics Cell. Reg. 32, 1–47.Google Scholar
  18. 18.
    Rodbell, M. (1995).Biosci. Rep. 15, 117–133.PubMedCrossRefGoogle Scholar
  19. 19.
    Neer, E. J. (1995).Cell 80, 249–257.PubMedCrossRefGoogle Scholar
  20. 20.
    Simon, M. I., Strathmann, M. P., and Gautam, N. (1991).Science 252, 802–808.PubMedCrossRefGoogle Scholar
  21. 21.
    Neubig, R. R. (1994).FASEB J. 8, 939–946.PubMedGoogle Scholar
  22. 22.
    Gudermann, T., Kalkbrenner, F., and Schultz, G. (1996).Annu. Rev. Pharmacol. Toxicol. 36, 429–459.PubMedGoogle Scholar
  23. 23.
    Felder, C. C. (1995).FASEB J. 9, 619–625.PubMedGoogle Scholar
  24. 24.
    Levitzki, A. and Bar-Sinai, A. (1991).Pharmacol. Ther. 50, 271–283.PubMedCrossRefGoogle Scholar
  25. 25.
    Boege, F., Neumann, E., and Helmreich, J. M. (1991).Eur. J. Biochem. 199, 1–15.PubMedCrossRefGoogle Scholar
  26. 26.
    Strosberg, A. D., Camoin, L., Thin, N., and Maigret, B. (1993).Drug Design Discovery 9, 199–211.Google Scholar
  27. 27.
    Berridge, M. J. (1993).Nature 361, 315–325.PubMedCrossRefGoogle Scholar
  28. 28.
    Exton, J. H. (1994).Annu. Rev. Physiol. 56, 349–369.PubMedCrossRefGoogle Scholar
  29. 29.
    Exton, J. H. (1996).Annu. Rev. Pharmacol. Toxicol. 36, 481–509.PubMedCrossRefGoogle Scholar
  30. 30.
    Sternweis, P. C. and Smrcka, A. V. (1993).Ciba Foundation Symp. 176, 96–111.Google Scholar
  31. 31.
    Segalat, L., Elkes, D. A., and Kaplan, J. M. (1995).Science 267, 1648–1651.PubMedCrossRefGoogle Scholar
  32. 32.
    Mendel, J. E., Korswagen, H. C., Liu, K. S., Hajdu-Cronin, Y. M., Simon, M. I., Plasterk, R. H., et al. (1995).Science 267, 1652–1655.PubMedCrossRefGoogle Scholar
  33. 33.
    McLaughlin, S., McKinnon, P., and Margolskee, R. F. (1992).Nature 357, 563–569.PubMedCrossRefGoogle Scholar
  34. 34.
    Chabre, M. and Deterre, P. (1989).Eur. J. Biochem. 179, 255–266.PubMedCrossRefGoogle Scholar
  35. 35.
    Stryer, L. (1991).J. Biol. Chem. 266, 10,711–10,714.Google Scholar
  36. 36.
    Hargrave, P. A. and McDowell, J. H. (1992).FASEB J. 6, 2323–2331.PubMedGoogle Scholar
  37. 37.
    Ruiz-Avila, L., McLaughlin, S. K., Wildman, D., McKinnon, P. J., Robichon, A., spickofsky, N., et al. (1995).Nature 376, 80–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Kolesnikov, S. S. and Margolskee, R. F. (1995).Nature 376, 85–88.PubMedCrossRefGoogle Scholar
  39. 39.
    Clapham, D. E. and Neer, E. J. (1993).Nature 365, 403–406.PubMedCrossRefGoogle Scholar
  40. 40.
    Sternweis, P. C. (1994).Curr. Opinion Cell Biol. 6, 198–203.PubMedCrossRefGoogle Scholar
  41. 41.
    Heithier, H., Frohlich, M., Dees, C., Baumann, M., Haring, M., Gierschik, P., et al. (1992).Eur. J. Biochem. 204, 1169–1181.PubMedCrossRefGoogle Scholar
  42. 42.
    Law, S. F., Manning, D., and Reisine, T. (1991).J. Biol. Chem. 266, 17,885–17,897.Google Scholar
  43. 43.
    Pitcher, J. A., Inglese, J., Higgins, J.E3, Arriza, J. L., Casey, P. J., Kim, C., et al. (1992).Science 257, 1264–1267.PubMedCrossRefGoogle Scholar
  44. 44.
    Taussig, R., Quarmby, L. M., and Gilman, A. G. (1993).J. Biol. Chem. 268, 9–12.PubMedGoogle Scholar
  45. 45.
    Federman, A. D., Conklin, B. R., Schrader, K. A., Reed, R. R., and Bourne, H. R. (1992).Nature 356, 159–161.PubMedCrossRefGoogle Scholar
  46. 46.
    Sunahara, R. K., Dessauer, C. W., and Gilman, A. G., (1996).Annu. Rev. Pharmacol. Toxicol. 36, 461–480.PubMedCrossRefGoogle Scholar
  47. 47.
    Camps, M., Carozzi, A., Schnabel, P., Scheer, A., Parker, P. J., and Gierschik, P. (1992).Nature 360, 684–686.PubMedCrossRefGoogle Scholar
  48. 48.
    Katz, A., Wu, D., and Simon, M. I. (1992).Nature 360, 686–689.PubMedCrossRefGoogle Scholar
  49. 49.
    Blank, J. L., Brattain, K. A., and Exton, J. H. (1992).J. Biol. Chem. 267, 23,069–23,075.Google Scholar
  50. 50.
    Dustin, P. (1984).Microtubules. Springer-Verlag, Berlin, pp. 1–482.Google Scholar
  51. 51.
    Fosket, D. E. and Morejohn, L. C. (1992).Ann. Rev. Plant Physiol. Plant Mol. Biol. 43, 201–240.Google Scholar
  52. 52.
    Oakley, B. R. (1992).Trends Cell Biol. 2, 1–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Joshi, H. C. and Cleveland, D. W. (1990).Cell Motil. Cytoskeleton 16, 159–163.PubMedCrossRefGoogle Scholar
  54. 54.
    Oakley, C. E. and Oakley, B. R. (1989).Nature 338, 662–664.PubMedCrossRefGoogle Scholar
  55. 55.
    Stearns, T., Evans, L., and Kirschner, M. (1991).Cell 65, 825–836.PubMedCrossRefGoogle Scholar
  56. 56.
    Zheng, Y., Jung, M. K., and Oakley, B. R. (1991).Cell 65, 817–823.PubMedCrossRefGoogle Scholar
  57. 57.
    Fuchs, U., Moepps, B., Maucher, H. P., and Schraudolf, H. (1993).Plant Mol. Biol. 23, 595–603.PubMedCrossRefGoogle Scholar
  58. 58.
    Marschall, L. G., Jeng, R. L., Mulholland, J., and Stearns, T. (1996).J. Cell Biol. 134, 443–454.PubMedCrossRefGoogle Scholar
  59. 59.
    Spang, A., Geissler, S., Grein, K., and Schiebel, E. (1996).J. Cell Biol. 134, 429–441.PubMedCrossRefGoogle Scholar
  60. 60.
    Li, Q. and Joshi, H. C. (1995).J. Cell Biol. 131, 207–214.PubMedCrossRefGoogle Scholar
  61. 61.
    Joshi, H. C., Monica, L., McNamara, L., and Cleveland, D. W. (1992).Nature 356, 80–83.PubMedCrossRefGoogle Scholar
  62. 62.
    Felix, M.-A., Antony, C., Wright, M., and Maro, B. (1994).J. Cell Biol. 124, 19–31.PubMedCrossRefGoogle Scholar
  63. 63.
    Stearns, T. and Kirschner, M. (1994).Cell 76, 623–638.PubMedCrossRefGoogle Scholar
  64. 64.
    Luduena, R. F., Banerjee, A., and Khan, I. A. (1992).Curr. Opinion Cell Biol. 4, 53–57.PubMedCrossRefGoogle Scholar
  65. 65.
    Burns, R. G. and Surridge, C. (1990).FEBS Lett. 271, 1–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Carlier, M.-F. (1982).Mol. Cell Biochem. 47, 97–113.PubMedCrossRefGoogle Scholar
  67. 67.
    Carlier, M.-F. (1989).Int. Rev. Cytol. 115, 139–170.PubMedGoogle Scholar
  68. 68.
    Caplow, M. and Shanks, J. (1996).Mol. Biol. Cell 7, 663–675.PubMedGoogle Scholar
  69. 69.
    Erickson, H.P. and O’Brien, E.T. (1992).Annu. Rev. Biophys. Biomol. Struct. 21, 145–166.PubMedGoogle Scholar
  70. 70.
    Purich, D. L. and Angelastro, J. M. (1994).Adv. Enzymol. Related Areas Mol. Biol. 69, 121–154.CrossRefGoogle Scholar
  71. 71.
    Caplow, M. (1992).Curr. Opinion Cell Biol. 4, 58–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Drechel, D. N. and Kirschner, M. W. (1994).Curr. Biol. 4, 1053–1061.CrossRefGoogle Scholar
  73. 73.
    MacRae, T. H. (1992).Biochem. Cell Biol. 70, 835–841.PubMedGoogle Scholar
  74. 74.
    Cassimeris, L. (1993).Cell Motil. Cytoskeleton 26, 275–281.PubMedCrossRefGoogle Scholar
  75. 75.
    Engelborghs, Y. (1990). In:Microtubule Proteins. Avila, J. (ed.) CRC, Boca Raton, FL, pp. 1–35.Google Scholar
  76. 76.
    Bayley, P. M. (1990):J. Cell Sci. 95, 329–334.PubMedGoogle Scholar
  77. 77.
    Mandelkow, E. and Mandelkow, E.-M. (1990).Curr. Opinion Cell Biol. 2, 3–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Avila, J. (1990):FASEB J. 4, 3284–3290.PubMedGoogle Scholar
  79. 79.
    Murphy, D. B. (1991).Curr. Opinion Cell Biol. 3, 43–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Joshi, H. C. (1993).BioEssays 15, 637–643.PubMedCrossRefGoogle Scholar
  81. 81.
    Ravindra, R. and Grosvenor, C. E. (1990).Mol. Cell. Endocrinol. 71, 165–176.PubMedCrossRefGoogle Scholar
  82. 82.
    McIntosh, J. R. (1994). In:Microtubules. Hyams J. S. and Lloyd, C. W. (eds.) Wiley-Liss, New York, pp. 413–434.Google Scholar
  83. 83.
    Jacobson, K., Sheets, E. D., and Simson, R. (1995).Science 268, 1441,1442.PubMedCrossRefGoogle Scholar
  84. 84.
    Travis, J. L. and Bowser, S. S. (1990).Protoplasma 154, 184–189.CrossRefGoogle Scholar
  85. 85.
    Dillman, J. F., III, Dabney, L. P., and Pfister, K. K. (1996).Proc. Natl. Acad. Sci. USA 93, 141–144.PubMedCrossRefGoogle Scholar
  86. 86.
    Ravindra, R., Forman, L. J., and Patel, S. A. (1996).Endocrine 4, 43–52.CrossRefGoogle Scholar
  87. 87.
    Ravindra, R., Kunapuli, S. P., Forman, L. J., Nagele, R. G., Foster, K. A., and Patel, S. A. (1996).J. Cell. Biochem. 61, 392–401.PubMedCrossRefGoogle Scholar
  88. 88.
    Yan, K., Greene, E., Belga, F., and Rasenick, M. M. (1996).J. Neurochem. 66, 1489–1495.PubMedCrossRefGoogle Scholar
  89. 89.
    Leiber, D., Jasper, J. R., Alousi, A. A., Martin, J., Bernstein, D., and Insel, P. A. (1993).J. Biol. Chem. 268, 3833–3837.PubMedGoogle Scholar
  90. 90.
    Hamel, E. (1990). In:Microtubule Proteins. Avila, J. (ed.) CRC, Boca Raton, FL, pp. 89–191.Google Scholar
  91. 91.
    Hamel, E. (1996).Med. Res. Rev. 16, 207–231.PubMedCrossRefGoogle Scholar
  92. 92.
    Rowinsky, E. K. and Donehower, R. C. (1991).Pharmacol. Ther. 52, 35–84.PubMedCrossRefGoogle Scholar
  93. 93.
    Himes, R. H. (1991).Pharmacol. Ther. 51, 257–267.PubMedCrossRefGoogle Scholar
  94. 94.
    Rowinsky, E. K., Onetto, N., Canetta, R. M., and Arbuck, S. G. (1992).Sem. Oncol. 19, 646–662.Google Scholar
  95. 95.
    Foa, R., Norton, L., and Seidman, A. D. (1994).Int. J. Clin. Lab. Res. 24, 6–14.PubMedCrossRefGoogle Scholar
  96. 96.
    Arnal, I. and Wade, R. H. (1995).Curr. Biol. 5, 900–908.PubMedCrossRefGoogle Scholar
  97. 97.
    Vyas, D. M. and Kadow, J. F. (1995).Prog. Med. Chem. 32, 289–337.PubMedGoogle Scholar
  98. 98.
    Wilson, L. and Jordan, M. A. (1994). In:Microtubules. Hyams, J. S. and Lloyd, C. W. (eds.) Wiley-Liss, New York, pp. 59–83.Google Scholar
  99. 99.
    Sato, H., Kato, T., Choku Takahashi, T., and Ito, T. (1982). In:Biological Functions of Microtubules and Related Structures. Sakai, H., Mohri, H., and Borisy, G. G. (eds.) Academic, New York, pp. 211–226.Google Scholar
  100. 100.
    Pepper, D. A. and Brinkley, B. R. (1979).J. Cell Biol. 82, 585–591.PubMedCrossRefGoogle Scholar
  101. 101.
    Stephens, R. E. (1986).Biol. Cell 57, 95–110.PubMedGoogle Scholar
  102. 102.
    Anderson, P. J. (1979).J. Biol. Chem. 254, 2168–2171.PubMedGoogle Scholar
  103. 103.
    Feit, H., Duton, G. R., Barondes, S. H., and Shelanski, M. L. (1971).J. Cell Biol. 51, 138–147.PubMedCrossRefGoogle Scholar
  104. 104.
    Thrower, D., Jordan, M. A., and Wilson, L. (1993).Methods Cell Biol. 37, 129–145.PubMedGoogle Scholar
  105. 105.
    Gozes, I. and Littauer, U. Z. (1979).FEBS Lett. 99, 86–90.PubMedCrossRefGoogle Scholar
  106. 106.
    Zisapel, N., Levi, M., and Gozes, L. (1980).J. Neurochem. 34, 26–32.PubMedCrossRefGoogle Scholar
  107. 107.
    Ravindra, R., Nagele, R. G., Patel, S. A., and Freeman, T. A. (1994).NeuroReport 5, 1653–1656.PubMedCrossRefGoogle Scholar
  108. 108.
    Burns, R. G., Farrell, K. W., and Surridge, C. D. (1993).Ciba Foundation Symp. 176, 248–267.Google Scholar
  109. 109.
    Sternlicht, H., Yaffe, M. B., and Farr, G. W. (1987).FEBS Lett. 214, 226–235.PubMedCrossRefGoogle Scholar
  110. 110.
    Scaife, R. M., Wilson, L., and Purich, D. L. (1992).Biochemistry 31, 310–316.PubMedCrossRefGoogle Scholar
  111. 111.
    Onali, P., Olianas, M. C., Schwartz, J. P., and Costa, E. (1983).Mol. Pharmacol. 24, 380–386.PubMedGoogle Scholar
  112. 112.
    Ravindra, R. and Aronstam, R. S. (1990).Biochem. Pharmacol. 40, 457–463.PubMedCrossRefGoogle Scholar
  113. 113.
    Cassel, D. and Selinger, Z. (1976).Biochim. Biophys. Acta 452, 538–551.PubMedGoogle Scholar
  114. 114.
    Bokoch, G. M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G. (1984).J. Biol. Chem. 259, 3560–3567.PubMedGoogle Scholar
  115. 115.
    Bond, R. A., Leff, P., Johnson, T. D., Milano, C. A., Rockman, H. A., McMinn, T. R., et al. (1995).Nature 374, 272–276.PubMedCrossRefGoogle Scholar
  116. 116.
    Cherksey, B. D., Zadunaisky, J. A., and Murphy, R. B. (1980).Proc. Natl. Acad. Sci. USA 77, 6401–6405.PubMedCrossRefGoogle Scholar
  117. 117.
    Schlegel, W., Kempner, E. S., and Rodbell, M. (1979).J. Biol. Chem. 254, 5168–5176.PubMedGoogle Scholar
  118. 118.
    Rodbell, M. (1980).Nature 284, 17–22.PubMedCrossRefGoogle Scholar
  119. 119.
    Coulter, S. and Rodbell, M. (1992).Proc. Natl. Acad. Sci. USA 89, 5842–5846.PubMedCrossRefGoogle Scholar
  120. 120.
    Nakamura, S.-I. and Rodbell, M. (1990).Proc. Natl. Acad. Sci. USA 87, 6413–6417.PubMedCrossRefGoogle Scholar
  121. 121.
    Nakamura, S.-I. and Rodbell, M. (1991).Proc. Natl. Acad. Sci. USA 88, 7150–7154.PubMedCrossRefGoogle Scholar
  122. 122.
    Jahangeer, S. and Rodbell, M. (1993).Proc. Natl. Acad. Sci. USA 90, 8782–8786.PubMedCrossRefGoogle Scholar
  123. 123.
    Sato, M., Kataoka, R., Dingus, J., Wilcox, M., Hildebrandt, J. D., and Lanier, S. M. (1995).J. Biol. Chem. 270, 15,269–15,276.Google Scholar
  124. 124.
    Sahyoon, N., LeVine, H., III, Davis, J., Hebdon, G. M., and Cuatrecasas, P. (1981).Proc. Natl. Acad. Sci. USA 78, 6158–6162.CrossRefGoogle Scholar
  125. 125.
    Carlson, K. E., Woolkalis, M. J., Newhouse, M. G., and Manning, D. R. (1986).Mol. Pharmacol. 30, 463–468.PubMedGoogle Scholar
  126. 126.
    Ibarrondo, J., Joubert, D., Dufour, M. N., Cohen-Solal, A., Homburger, V., Jard, S., et al. (1995).Proc. Natl. Acad. Sci. USA 92, 8413–8417.PubMedCrossRefGoogle Scholar
  127. 127.
    Vaziri, C. and Downes, C. P. (1992).J. Biol. Chem. 267, 22,973–22,981.Google Scholar
  128. 128.
    Offringa, R. and Bierer, B. E. (1993).J. Biol. Chem. 268, 4979–4988.PubMedGoogle Scholar
  129. 129.
    Edelman, G. M., Yahara, I., and Wang, J. L. (1973).Proc. Natl. Acad. Sci. USA 70, 1442–1446.PubMedCrossRefGoogle Scholar
  130. 130.
    Knowles, D. W., Chasis, J. A., Evans, E. A., and Mohandas, N. (1994).Biophys. J. 66, 1726–1732.PubMedGoogle Scholar
  131. 131.
    Kirsch, J., Wolters, I., Triller, A., and Betz, H. (1993).Nature 366, 745–748.PubMedCrossRefGoogle Scholar
  132. 132.
    Item, C. and Sieghart, W. (1994).J. Neurochem. 63, 1119–1125.PubMedCrossRefGoogle Scholar
  133. 133.
    Whatley, V. J., Mihic, S. J., Allan, A. M., McQuilkin, S. J., and Harris, R. A. (1994).J. Biol. Chem. 269, 19,546–19,552.Google Scholar
  134. 134.
    Andrews, W. V., Staley, D. D., Huckle, W. R., and Conn, P. M. (1986).Endocrinology 119, 2537–2546.PubMedGoogle Scholar
  135. 135.
    Limor, R., Schvartz, I., Hazum, E., Ayalon, D., and Naor, Z. (1989).Biochem. Biophys. Res. Commun. 159, 209–215.PubMedCrossRefGoogle Scholar
  136. 136.
    Perrin, M. H., Haas, Y., Porter, J., Rivier, J., and Vale, W. (1989).Endocrinology 124, 798–804.PubMedGoogle Scholar
  137. 137.
    Gershengorn, M. C. and Osman, R. (1996).Physiol. Rev. 76, 175–191.PubMedGoogle Scholar
  138. 138.
    Straub, R. E. and Gershengorn, M. C. (1986).J. Biol. Chem. 261, 2712–2717.PubMedGoogle Scholar
  139. 139.
    Lucas, D. O., Bajjalieh, S. M., Kowalchyk, J. A., and Martin, T. F. J. (1985).Biochem. Biophys. Res. Commun. 132, 721–728.PubMedCrossRefGoogle Scholar
  140. 140.
    Martin, T. F. J., Lucas, D. O., Bajjalieh, S. M., and Kowalchyk, J. A. (1986).J. Biol. Chem. 261, 2918–2927.PubMedGoogle Scholar
  141. 141.
    Taylor, R. L. and Burt, D. R. (1981).Mol. Cell.Endocrinol. 21, 85–91.PubMedCrossRefGoogle Scholar
  142. 142.
    Cuatrecasas, P. (1986).The Harvey Lectures Series80, 89–128.Google Scholar
  143. 143.
    Ward, M. D. and Hammer, D. A. (1994).J. Math. Biol. 32, 677–704.PubMedCrossRefGoogle Scholar
  144. 144.
    Conn, P. M. and Hazum, E. (1981).Endocrinology 109, 2040–2045.PubMedCrossRefGoogle Scholar
  145. 145.
    Matus-Leibovitch, N., Gershengorn, M. C., and Oron, Y. (1993).Cell. Mol. Neurobiol. 13, 625–637.PubMedCrossRefGoogle Scholar
  146. 146.
    Meyer zu Heringdorf, D., Liedel, K., Kaldenberg-Stasch, S., Michel, M. C., Jakobs, K. H., and Wieland, T. (1996).Eur. J. Biochem. 235, 670–676.PubMedCrossRefGoogle Scholar
  147. 147.
    Sarndahl, E., Bokoch, G. M., Boulay, F., Stendahl, O., and Andersson, T. (1996).J. Biol. Chem. 271, 15,267–15,271.Google Scholar
  148. 148.
    Ravindra, R., McIlroy, P. J., and Patel, S. A. (1997).Pharmacol. Toxicol. 80, 24–29.PubMedGoogle Scholar
  149. 149.
    Wunderlich, F., Muller, R., and Speth, V. (1973).Science 182, 1136–1138.PubMedCrossRefGoogle Scholar
  150. 150.
    Erickson, M. A., Robinson, P., and Lisman, J. (1992).Science 257, 1255–1258.PubMedCrossRefGoogle Scholar
  151. 151.
    Berstein, G., Blank, J. L., Jhon, D.-Y., Exton, J. H., Rhee, S. G., and Ross, E. M. (1992).Cell 70, 411–418.PubMedCrossRefGoogle Scholar
  152. 152.
    Ravindra, R. and Aronstam, R. S. (1991).Pharmacol. Toxicol. 69, 259–262.PubMedGoogle Scholar
  153. 153.
    Ravindra, R. and Aronstam, R. S. (1992).J. Reprod. Fertil. 95, 669–677.PubMedCrossRefGoogle Scholar
  154. 154.
    Lin, C. M. and Hamel, E. (1981).J. Biol. Chem. 256, 9242–9245.PubMedGoogle Scholar
  155. 155.
    Arai, T. and Kaziro, Y. (1977).J. Biochem. 82, 1063–1071.PubMedGoogle Scholar
  156. 156.
    Hsieh, K. P. and Martin, T. F. J. (1992).Mol. Endocrinol. 6, 1673–1681.PubMedCrossRefGoogle Scholar
  157. 157.
    Wilson, B. S., Komuro, M., and Farquhar, M. G. (1994).Endocrinology 134, 233–244.PubMedCrossRefGoogle Scholar
  158. 158.
    Insel, P. A. and Kennedy, M. S. (1978).Nature 273, 471–473.PubMedCrossRefGoogle Scholar
  159. 159.
    Margolis, R. and Wilson, L. (1979).Cell 18, 673–679.PubMedCrossRefGoogle Scholar
  160. 160.
    Wolff, J. and Cook, G. H. (1985).Biochim. Biophys. Acta 844, 34–41.PubMedCrossRefGoogle Scholar
  161. 161.
    Kennedy, M. S. and Insel, P. A. (1979).Mol. Pharmacol. 16, 215–223.PubMedGoogle Scholar
  162. 162.
    Rudolph, S. A., Greengard, P., and Malawista, S. E. (1977).Proc. Natl. Acad. Sci. USA 74, 3404–3408.PubMedCrossRefGoogle Scholar
  163. 163.
    Simantov, R. and Sachs, L. (1978).FEBS Lett. 90, 69–73.PubMedCrossRefGoogle Scholar
  164. 164.
    Greene, W. C., Parker, C. M., and Parker, C. W. (1976).J. Immunol. 117, 1015–1022.PubMedGoogle Scholar
  165. 165.
    Rasenick, M. M., Stein, P. J., and Bitensky, M. W. (1981).Nature 294, 560–562.PubMedCrossRefGoogle Scholar
  166. 166.
    DoKhac, L., Tanfin, Z., and Harbon, S. (1983).Biochem. Pharmacol. 32, 2535–2541.PubMedCrossRefGoogle Scholar
  167. 167.
    Cote, M., Payet, M.-D., and Gallo-Payet, N. (1997)Endocrinology 138, 69–78.PubMedCrossRefGoogle Scholar
  168. 168.
    Rasenick, M. M. and Wang, N. (1988).J. Neurochem. 51, 300–311.PubMedCrossRefGoogle Scholar
  169. 169.
    Hatta, S., Ozawa, H., Saito, T., and Ohshika, H. (1995).J. Neurochem. 64, 1343–1350.PubMedCrossRefGoogle Scholar
  170. 170.
    Wang, N., Yan, K., and Rasenick, M. M. (1990).J. Biol. Chem. 265, 1239–1242.PubMedGoogle Scholar
  171. 171.
    Roychowdhury, S. and Rasenick, M. M. (1994).Biochemistry 33, 9800–9805.PubMedCrossRefGoogle Scholar
  172. 172.
    Popova, J. S., Johnson, G. L., and Rasenick, M. M. (1994).J. Biol. Chem. 269, 21,748–21,754.Google Scholar
  173. 173.
    Chabre, M. (1987).Trends Biochem. Sci. 12, 213–215.CrossRefGoogle Scholar
  174. 174.
    Bokoch, G. M., Bickford, K., and Elohl, B. P. (1988).J. Cell Biol. 106, 1927–1936.PubMedCrossRefGoogle Scholar
  175. 175.
    Rotrosen, D., Gallin, J. I., Spiegel, A. M., and Malech, H. L. (1988).J. Biol. Chem. 263, 10,958–10,964.Google Scholar
  176. 176.
    Rudolph, U., Koesling, D., Hinsch, K.-D., Seifert, R., Bigalke, M., Schultz, G., et al. (1989).Mol. Cell. Endocrinol. 63, 143–153.PubMedCrossRefGoogle Scholar
  177. 177.
    Muller, L., Picart, R., Barret, A., Bockaert, J., Homburger, V., and Tougard, C. (1994).Mol. Cell. Neurosci. 5, 556–566.PubMedCrossRefGoogle Scholar
  178. 178.
    Milligan, G. (1993).Trends Pharm. Sci. 14, 413–418.PubMedCrossRefGoogle Scholar
  179. 179.
    Wedegaertner, P. B., Bourne, H. R., and von Zastrow, M. (1996).Mol. Biol. Cell 7, 1225–1233.PubMedGoogle Scholar
  180. 180.
    Takahashi, S., Negishi, M., and Ichikawa A. (1991).J. Biol. Chem. 266, 5367–5370.PubMedGoogle Scholar
  181. 181.
    Negishi, M., Hashimoto, H., and Ichikawa, A. (1992).J. Biol. Chem. 267, 2367–2369.Google Scholar
  182. 182.
    Ransnas, L., Svoboda, P., Jasper, J., and Insel, P. A. (1989).Proc. Natl. Acad. Sci. USA 86, 7900–7903.PubMedCrossRefGoogle Scholar
  183. 183.
    Ozawa, K., Takahashi, M., and Sobue, K. (1996).FEBS Lett. 382, 159–163.PubMedCrossRefGoogle Scholar
  184. 184.
    Szego, C. M. and Pietras, R. J. (1984).Int. Rev. Cytol. 88, 1–302.PubMedGoogle Scholar
  185. 185.
    Szego, C. M. (1994).Endocrine 2, 1079–1093.Google Scholar
  186. 186.
    Schelling, J. R., Hanson, A. S., Marzec, R., and Linas, S. L. (1992).J. Clin. Invest. 90, 2472–2480.PubMedGoogle Scholar
  187. 187.
    Feuilloley, M., Desrues, L., and Vaudry, H. (1993).Endocrinology 133, 2319–2326.PubMedCrossRefGoogle Scholar
  188. 188.
    Egan, J. J., Gronowicz, G., and Rodan, G. A. (1991).J. Cell Biol. 45, 101–111.Google Scholar
  189. 189.
    Lomri, A. and Marie, P. J. (1990).Bone Miner. 10, 1–12.PubMedCrossRefGoogle Scholar
  190. 190.
    Lomri, A. and Marie, P. J. (1990).Biochim. Biophys. Acta 1052, 179–186.PubMedCrossRefGoogle Scholar
  191. 191.
    Taniguchi, T., Takaishi, K., Murayama, T., Ito, M., Iwata, N., Chihara, K., et al. (1996).Oncogene 12, 1357–1360.PubMedGoogle Scholar
  192. 192.
    Rybczynski, R. and Gilbert, L. I. (1995).Dev. Biol. 169, 15–28.PubMedCrossRefGoogle Scholar
  193. 193.
    Lawrence, T. S., Ginzberg, R. D., Gilula, N. B., and Beers, W. H. (1979).J. Cell Biol. 80, 21–36.PubMedCrossRefGoogle Scholar
  194. 194.
    Aharoni, A., Dantes, A., and Amsterdam, A. (1993).Endocrinology 133, 1426–1436.PubMedCrossRefGoogle Scholar
  195. 195.
    Feuilloley, M. and Vaudry, H. (1996).Endocrine Rev. 17, 269–288.CrossRefGoogle Scholar
  196. 196.
    Kiley, S. C., Parker, P. J., Fabbro, D., and Jaken, S. (1992).Mol. Endocrinol. 6, 120–131.PubMedCrossRefGoogle Scholar
  197. 197.
    De Moortele, S. V., Rosenbaum, E., Tixier-Vidal, A., and Tougard, C. (1991).J. Cell Sci. 99, 79–89.PubMedGoogle Scholar
  198. 198.
    Ravindra, R., Forman, L. J., Foster, K. A., and Patel, S. A. (1995).NeuroReport 6, 1405–1408.PubMedCrossRefGoogle Scholar
  199. 199.
    Wu, H. C. and Lin, C. T. (1994).Lab. Invest. 71, 175–181.PubMedGoogle Scholar
  200. 200.
    Sandoval, I. V. and Cuatrecasas, P. (1978).Eur. J. Biochem. 91, 151–161.PubMedCrossRefGoogle Scholar
  201. 201.
    Higashi, K. and Ishibashi, S. (1985).Biochem. Biophys. Res. Commun. 132, 193–197.PubMedCrossRefGoogle Scholar
  202. 202.
    Geahlen, R. L. and Haley, B. E. (1979).J. Biol. Chem. 254, 11,982–11,987.Google Scholar
  203. 203.
    Roychowdhury, S., Wang, N., and Rasenick, M. M. (1993).Biochemistry 32, 4955–4961.PubMedCrossRefGoogle Scholar
  204. 204.
    Wang, N. and Rasenick, M. M. (1991).Biochemistry 30, 10,957–10,965.Google Scholar
  205. 205.
    Keski-Oja, J., Lehto, V.-P., and Virtanen, I. (1981).J. Cell Biol. 90, 537–541.PubMedCrossRefGoogle Scholar
  206. 206.
    Calissano, P., Monaco, G., Castellani, L., Mercanti, D., and Levi, A. (1978).Proc. Natl. Acad. Sci. USA 75, 2210–2214.PubMedCrossRefGoogle Scholar
  207. 207.
    Haussinger, D., Stoll, B., vom Dahl, S., Theodoropoulos, P. A., Markogiannakis, E., Gravanis, A., et al. (1994).Biochem. Cell Biol. 72, 12–19.PubMedCrossRefGoogle Scholar
  208. 208.
    Martin, S. S., Rose, D. W., Salteil, A. R., Klippel, A., Williams, L. T., and Olefsky, J. M. (1996).Endocrinology 137, 5045–5054.PubMedCrossRefGoogle Scholar
  209. 209.
    Thatte, H. S., Bridges, K. R., and Golan, D. E. (1994).J. Cell. Physiol. 160, 345–357.PubMedCrossRefGoogle Scholar
  210. 210.
    Hunt, R. C., Dewey, A., and Davis, A. A. (1989).J. Cell Sci. 92, 655–666.PubMedGoogle Scholar
  211. 211.
    Spoerri, P. E. and Roisen, F. J. (1992).J. Neurosci. Res. 31, 494–501.PubMedCrossRefGoogle Scholar
  212. 212.
    Olorundare, O. E., Simmons, S. R., and Albrecht, R. M. (1993).Eur. J. Cell Biol. 60, 131–145.PubMedGoogle Scholar
  213. 213.
    Bourguignon, L. Y., Lokeshwar, V. B., Chen, X., and Kerrick, W. G. (1993).J. Immunology 151, 6634–6644.Google Scholar
  214. 214.
    Wang, N., Planus, E., Pouchelet, M., Fredberg, J. J., and Barlovatz-Meimon, G. (1995).Am. J. Phys. 268, C1062–1066.Google Scholar
  215. 215.
    van Bergen en Henegouwen, P. M. P., Defize, L. H. K., de Kroon, J., van Damme, H., Verkleij, A. J., and Boonstra, J. (1989).J. Cell. Biochem. 39, 455–465.PubMedCrossRefGoogle Scholar
  216. 216.
    Ravindra, R. and Caro, J. F. (1993).J. Cell. Biochem. 53, 181–189.PubMedCrossRefGoogle Scholar
  217. 217.
    Gawler, D. and Houslay, M. D. (1987).FEBS Lett. 216, 94–98.PubMedCrossRefGoogle Scholar
  218. 218.
    Luttrell, L., Kilgour, E., Lamer, J., and Romero, G. (1990).J. Biol. Chem. 265, 16,873–16,879.Google Scholar
  219. 219.
    Baltensperger, K., Karoor, V., Paul, H., Ruoho, A., Czech, M. P., and Malbon, C. C. (1996).J. Biol. Chem. 271, 1061–1064.PubMedCrossRefGoogle Scholar
  220. 220.
    Moxham, C. M. and Malbon, C. C. (1996).Nature 379, 840–844.PubMedCrossRefGoogle Scholar
  221. 221.
    Daub, H., Weiss, F. U., Wallasch, C., and Ullrich, A. (1996)Nature 379, 557–560.PubMedCrossRefGoogle Scholar
  222. 222.
    Velloso, L. A., Folli, F., Sun, X. J., White, M. F., Saad, M. J. A., and Kahn, C. R. (1996).Proc. Natl. Acad. Sci. USA 93, 12,490–12,495.CrossRefGoogle Scholar
  223. 223.
    Kemphues, K. J., Kaufman, T. C., Raff, R. A., and Raff, E. C. (1982).Cell 31, 655–670.PubMedCrossRefGoogle Scholar
  224. 224.
    Boggs, B. and Cabral, F. (1987).Mol. Cell. Biol. 7, 2700–2702.PubMedGoogle Scholar
  225. 225.
    Sisodia, S. S., Gay, D. A., and Cleveland, D. W. (1990).Nature New Biol. 2, 66–76.Google Scholar
  226. 226.
    Cleveland, D. W. and Theodorakis, N. G. (1994). In:Microtubules. Hyams, J. S. and Lloyd, C. W. (eds.) Wiley-Liss, New York, pp. 47–58.Google Scholar
  227. 227.
    Brostrom, C. O., Bocckino, S. B., and Brostrom, M. A. (1983).J. Biol. Chem. 258, 14,390–14,399.Google Scholar
  228. 228.
    Nurnberg, B. and Ahnert-Hilger, G. (1996).FEBS Lett. 389, 61–65.PubMedCrossRefGoogle Scholar
  229. 229.
    Webb, B. C. and Wilson, L. (1980).Biochemistry 19, 1993–2000.PubMedCrossRefGoogle Scholar
  230. 230.
    Pirollet, F., Job, D., Fischer, E. H., and Margolis, R. L. (1983).Proc. Natl. Acad. Sci. USA 80, 1560–1564.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  1. 1.Endocrine-Metabolic DivisionVeterans Affairs Medical CenterNorth Chicago
  2. 2.Finch University of Health Sciences/The Chicago Medical SchoolNorth Chicago

Personalised recommendations