Advertisement

Israel Journal of Mathematics

, Volume 151, Issue 1, pp 125–144 | Cite as

Patchworking singular algebraic curves I

  • Eugenii Shustin
  • Ilya Tyomkin
Article

Abstract

In this paper we present a general patchworking procedure for the construction of reduced singular curves having prescribed singularities and belonging to a given linear system on algebraic surfaces. It originates in the Viro “gluing” method for the construction of real non-singular algebraic hypersurfaces. The general procedure includes almost all known particular modifications, and goes far beyond. Some applications and examples illustrate the construction.

Keywords

Singular Point Exact Sequence Line Bundle Algebraic Surface Singular Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Caporaso and J. Harris,Counting plane curves of any genus, Inventiones Mathematicae131 (1998), 345–392.MathSciNetCrossRefGoogle Scholar
  2. [2]
    X. Chen,Rational curves on K3 surfaces, Journal of Algebraic Geometry8 (1999), 245–278.MathSciNetMATHGoogle Scholar
  3. [3]
    L. Chiantini and C. Ciliberto,On the Severi varieties on surfaces in3, Journal of Algebraic Geometry8 (1999), 67–83.MathSciNetMATHGoogle Scholar
  4. [4]
    R. E. Gompf,A new construction of symplectic manifolds, Annals of Mathematics (2)142 (1995), 527–595.MathSciNetCrossRefGoogle Scholar
  5. [5]
    G.-M. Greuel and U. Karras,Families of varieties with prescribed singularities, Compositio Mathematica69 (1989), 83–110.MathSciNetMATHGoogle Scholar
  6. [6]
    G.-M. Greuel and C. Lossen,Equianalytic and equisingular families of curves on surfaces, Manuscripta Mathematica91 (1996), 323–342.MathSciNetCrossRefGoogle Scholar
  7. [7]
    R. Hartschorne,Algebraic Geometry, Springer-Verlag, Berlin, 1977.CrossRefGoogle Scholar
  8. [8]
    D. Hilbert,Mathematische Probleme, Archiv der Mathematik und Physik3 (1901), 213–237 (German).MATHGoogle Scholar
  9. [9]
    I. Itenberg and E. Shustin,Singular points and limit cycles of planar polynomial vector fields, Duke Mathematical Journal102 (2000), 1–37.MathSciNetCrossRefGoogle Scholar
  10. [10]
    I. Itenberg and E. Shustin,Combinatorial patchworking of real pseudo-holomorphic curves, Turkish Journal of Mathematics26 (2002), 27–51.MathSciNetMATHGoogle Scholar
  11. [11]
    T. Keilen and I. Tyomkin,Existence of curves with prescribed topological singularities, Transactions of the American Mathematical Society354 (2002), 1837–1860.MathSciNetCrossRefGoogle Scholar
  12. [12]
    T. Oda,Convex Bodies and Algebraic Geometry, Springer-Verlag, Berlin, 1988.MATHGoogle Scholar
  13. [13]
    Z. Ran,Enumerative geometry of singular plane curves, Inventiones Mathematicae97 (1989), 447–465.MathSciNetCrossRefGoogle Scholar
  14. [14]
    E. Shustin,Real plane algebraic curves with prescribed singularities, Topology32 (1993), 845–856.MathSciNetCrossRefGoogle Scholar
  15. [15]
    E. Shustin,Critical points of real polynomials, subdivisions of Newton polyhedra and topology of real algebraic hypersurfaces, American Mathematical Society Translations (2)173 (1996), 203–223.MathSciNetMATHGoogle Scholar
  16. [16]
    E. Shustin,Gluing of singular and critical points, Topology37 (1998), 195–217.MathSciNetCrossRefGoogle Scholar
  17. [17]
    E. Shustin,Lower deformations of isolated hypersurface singularities, Algebra i Analiz10 (1999), 221–249 (English translation: St. Petersburg Mathematical Journal11 (2000), 883–908).MATHGoogle Scholar
  18. [18]
    E. Shustin,Analytic order of singular and critical points, Transactions of the American Mathematical Society356 (2004), 953–985.MathSciNetCrossRefGoogle Scholar
  19. [19]
    E. Shustin,Patchworking singular algebraic curves, non-Archimedean amoebas and enumerative geometry, A tropical approach to enumerative geometry, Algebra i Analiz17 (2005), 170–214.Google Scholar
  20. [20]
    E. Shustin and I. Tyomkin,Patchworking singular algebraic curves II, Israel Journal of Mathematics, this volume.Google Scholar
  21. [21]
    E. Shustin and E. Westenberger,Projective hypersurfaces with many singularities of prescribed types, Journal of the London Mathematical Society (2)70 (2004), 609–624.MathSciNetCrossRefGoogle Scholar
  22. [22]
    O. Viro,Curves of degree 7, curves of degree 8 and the Ragsdale conjecture, Doklady Akademii Nauk SSSR254 (1980), 1305–1310 (Russian); English translation: Soviet Mathematics Doklady22 (1980), 566–570.MathSciNetMATHGoogle Scholar
  23. [23]
    O. Ya. Viro,Gluing of algebraic hypersurfaces, smoothing of singularities and construction of curves, Proceedings of the Leningrad International Topological Conference, Leningrad, Aug. 1982, Nauka, Leningrad, 1983, pp. 149–197 (Russian).Google Scholar
  24. [24]
    O. Viro,Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7, Lecture Notes in Mathematics1060, Springer-Verlag, Berlin, 1984, pp. 187–200.MATHGoogle Scholar
  25. [25]
    O. Ya. Viro,Real algebraic plane curves: constructions with controlled topology, Leningrad Mathemaical Journal1 (1990), 1059–1134.MATHGoogle Scholar
  26. [26]
    O. Viro,Introduction to Topology of Real Algebraic Varieties, Preprint, appears in the internet at http://www.math.uu.se/~oleg/es/index.html.Google Scholar
  27. [27]
    O. Viro,Patchworking real algebraic varieties, Preprint, appears in the internet at http://www.math.uu.se/~oleg/pw.ps.Google Scholar

Copyright information

© The Hebrew University Magnes Press 2006

Authors and Affiliations

  • Eugenii Shustin
    • 1
  • Ilya Tyomkin
    • 2
  1. 1.School of Mathematical SciencesTel Aviv University Ramat AvivTel AvivIsrael
  2. 2.Institut de Mathématiques, Algèbres d'opérateurs et répresentationsUniversité Pierre et Marie CurieParisFrance

Personalised recommendations