Israel Journal of Mathematics

, Volume 148, Issue 1, pp 41–86 | Cite as

Extensions of the Menchoff-Rademacher theorem with applications to ergodic theory

  • Guy Cohen
  • Michael Lin


We prove extensions of Menchoff's inequality and the Menchoff-Rademacher theorem for sequences {f n } ∪L p , based on the size of the norms of sums of sub-blocks of the firstn functions. The results are aplied to the study of a.e. convergence of series Σ n a n T n g/ n whenT is anL 2 -contraction,gL 2 , and {a n } is an appropriate sequence.

Given a sequence {f n }∪L p (Ω, μ), 1<p≤2, of independent centered random variables, we study conditions for the existence of a set ofx of μ-probability 1, such that for every contractionT on\(L_2 (\mathcal{Y},\pi )\) andgL 2 (π), the random power series Σ n f n (x)T n g converges π-a.e. The conditions are used to show that for {f n } centered i.i.d. withf 1L log+ L, there exists a set ofx of full measure such that for every contractionT on\(L_2 (\mathcal{Y},\pi )\) andgL 2 (π), the random series Σ n f n (x)T n g/n converges π-a.e.


Spectral Density Maximal Function Orthogonal Series Pointwise Ergodic Theorem Dual Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Alexits,Convergence Problems of Orthogonal Series, International Series of Monographs on Pure and Applied Mathematics, Vol. 20, Pergamon Press, New York—Oxford, 1961.MATHGoogle Scholar
  2. [2]
    I. Assani,A weighted pointwise ergodic theorem, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques34 (1998), 139–150.MATHMathSciNetGoogle Scholar
  3. [3]
    I. Assani,Wiener-Wintner dynamical systems, Ergodic Theory and Dynamical Systems23 (2003), 1637–1654.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    I. Assani,Duality and the one-sided ergodic Hilbert transform, Contemporary Mathematics356 (2004), 81–90.MathSciNetGoogle Scholar
  5. [5]
    B. von Bahr and C.-G. Esseen,Inequalities for the r-th absolute moment of a sum of random variables, 1≤r≤2, Annals of Mathematical Statistics36 (1965), 299–303.CrossRefMathSciNetGoogle Scholar
  6. [6]
    P. Billingsley,Convergence of Probability Measures, Wiley, New York, 1968.MATHGoogle Scholar
  7. [7]
    F. Boukhari and M. Weber,Almost sure convergence of weighted series of contractions, Illinois Journal of Mathematics46 (2002), 1–21.MathSciNetGoogle Scholar
  8. [8]
    Y.-S. Chow and H. Teicher,Probability Theory. Independence, Interchangeability, Martingales, Springer, New York, 1978.MATHGoogle Scholar
  9. [9]
    G. Cohen, R. L. Jones and M. Lin,On strong laws of large numbers with rates, Contemporary Mathematics356 (2004), 101–126.MathSciNetGoogle Scholar
  10. [10]
    G. Cohen and M. Lin,Laws of large numbers with rates and the one-sided ergodic Hilbert transform, Illinois Journal of Mathematics47 (2003), 997–1031.MATHMathSciNetGoogle Scholar
  11. [11]
    Y. Derriennic and M. Lin,Poisson equations and ergodic theorems for fractional coboundaries, Israel Journal of Mathematics123 (2001), 93–130.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    J. L. Doob,Stochastic Processes, Wiley, New York, 1953.MATHGoogle Scholar
  13. [13]
    S. Foguel,Powers of a contraction in Hilbert space, Pacific Journal of Mathematics13 (1963), 551–562.MATHMathSciNetGoogle Scholar
  14. [14]
    I. Gál and J. Koksma,Sur l'ordre de grandeur des fonctions sommables, Indagationes Mathematicae12 (1950), 192–207.Google Scholar
  15. [15]
    V. F. Gaposhkin,Lacunary series and independent functions, Russian Mathematical Surveys21 (1966), No. 6, 1–82.MATHCrossRefGoogle Scholar
  16. [16]
    V. F. Gaposhkin,Convergence of series connected with stationary sequences, Mathematics of the USSR-Izvestiya9 (1975), 1297–1321.CrossRefGoogle Scholar
  17. [17]
    V. F. Gaposhkin,Strong consistency of estimates of the trend of a time series, Mathematical Notes26 (1979), 812–818.MathSciNetGoogle Scholar
  18. [18]
    V. F. Gaposhkin,On the dependence of the convergence rate in the SLLN for stationary processes on the rate of decay of the correlation function, Theory of Probability and Its Applications26 (1981), 706–720.CrossRefMathSciNetGoogle Scholar
  19. [19]
    V. F. Gaposhkin,A remark on strong consistency of LS estimates under weakly correlated observation errors, Theory of Probability and Its Applications30 (1985), 177–181.CrossRefMathSciNetGoogle Scholar
  20. [20]
    V. F. Gaposhkin,Spectral criteria for existence of generalized ergodic transforms, Theory of Probability and Its Applications41 (1996), 247–264.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    E. J. Hannan,Rates of convergence for time series regression, Advances in Applied Probability10 (1978), 740–743.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    E. W. Hobson,On certain theorems in the theory of series of normal orthogonal functions, Proceedings of the London Mathematical Society (2)14 (1915), 428–439.Google Scholar
  23. [23]
    C. Houdré,On the almost sure convergence of series of stationary and related nonstationary variables, Annals of Probability23 (1995), 1204–1218.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    M. Kac, R. Salem and A. Zygmund,A gap theorem, Transactions of the American Mathematical Society63 (1948), 235–243.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    J. P. Kahane,Some Random Series of Functions, Second edition, Cambridge University Press, 1985.Google Scholar
  26. [26]
    A. Khintchine and A. Kolmogorov,Über Konvergenz von Reihen, deren Glieder durch zen Zufall bestimmt werden, Matematischeskii Sbornik32 (1925), 668–677.Google Scholar
  27. [27]
    U. Krengel,Ergodic Theorems, de Gruyter Studies in Mathematics 6, Berlin, 1985.Google Scholar
  28. [28]
    M. Lin and R. Sine,Ergodic theory and the functional equation (I-T)x=y, Journal of Operator Theory10 (1983), 153–166.MATHMathSciNetGoogle Scholar
  29. [29]
    M. Longnecker and R. J. Serfling,General moment and probability inequalities for the maximum partial sum, Acta Mathematica Academiae Scientiarum Hungaricae30 (1977), 129–133.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    J. Marcinkiewicz and A. Zygmund, frSur les fonctions indépendentes, Fundamenta Mathematicae29 (1937), 60–90.MATHGoogle Scholar
  31. [31]
    D. Menchoff,Sur les séries des fonctions orthogonales, part I, Fundamenta Mathematicae4 (1923), 82–105; part II, ibid. Fundamenta Mathematicae 8 (1926), 56–108; part III, ibid. Fundamenta Mathematicae 10 (1927), 375–480.Google Scholar
  32. [32]
    F. Móricz,Moment inequalities and the strong laws of large numbers, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete35 (1976), 299–314.MATHCrossRefGoogle Scholar
  33. [33]
    F. Móricz, R. J. Serfling and W. Stout,Moment and probability bounds with quasi-superadditive structure for the maximal partial sum, Annals of Probability10 (1982), 1032–1040.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    F. Móricz and K. Tandori,Almost everywhere convergence of orthogonal series revisited, Journal of Mathematical Analysis and Applications182 (1994), 637–653.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    F. Móricz, and K. Tandori,An improved Menshov-Rademacher theorem, Proceedings of the American Mathematical Society124 (1996), 877–885.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    G. Peškir, D. Schneider and M. Weber,Randomly weighted series of contractions in Hilbert spaces, Mathematica Scandinavica79 (1996), 263–282.MathSciNetGoogle Scholar
  37. [37]
    M. Plancherel,Sur la convergence des séries de fonctions orthogonales, Comptes Rendus de l'Académie des Sciences, Paris157 (1913), 539–542.Google Scholar
  38. [38]
    H. Rademacher,Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Mathematische Annalen87 (1922), 112–138.CrossRefMathSciNetGoogle Scholar
  39. [39]
    F. Riesz and B. Sz. Nagy,Functional Analysis, Translated from the 2nd French edition by Leo F. Boron, Dover Publications Inc., New York, 1990.Google Scholar
  40. [40]
    J. Rosenblatt,Almost everywhere convergence of series, Mathematische Annalen280 (1989), 565–577.CrossRefMathSciNetGoogle Scholar
  41. [41]
    R. Salem,A new proof of a theorem of Menchoff, Duke Mathematical Journal8 (1941), 269–272.MATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    R. J. Serfling,Moment inequalities for the maximum cumulative sum, Annals of Mathematical Statistics41, (1970), 1227–1234.CrossRefMathSciNetGoogle Scholar
  43. [43]
    R. J. Serfling,Convergence properties of S n under moment restrictions, Annals of Mathematical Statistics,41 (1970), 1235–1248.CrossRefMathSciNetGoogle Scholar
  44. [44]
    A. Szép,The non-orthogonal Menchoff-Rademacher theorem, Acta Scientiarum Mathematicarum (Szeged)33 (1972), 231–235.MATHGoogle Scholar
  45. [45]
    M. Talagrand,A borderline random Fourier series, The Annals of Probability23 (1995), 776–785.MATHCrossRefMathSciNetGoogle Scholar
  46. [46]
    K. Tandori,Über die Divergenz der Orthogonalreihen, Publicationes Mathematicae Debrecen8 (1961), 291–307.MATHMathSciNetGoogle Scholar
  47. [47]
    K. Tandori, Über die Konvergenz der Orthogonalreihen II, Acta Scientiarum Mathematicarum (Szeged)25 (1964), 219–232.MathSciNetGoogle Scholar
  48. [48]
    K. Tandori,Bemerkung zur Konvergenz der Orthogonalreihen, Acta Scientiarum Mathematicarum (Szeged)26 (1965), 249–251.MathSciNetGoogle Scholar
  49. [49]
    M. Weber,A propos d'une démonstration de K. Tandori, Publications de l'Institut de Recherche Mathématique de Rennes—Probabilité (1998), 7pp.Google Scholar
  50. [50]
    M. Weber,Estimating random polynomials by means of metric entropy methods, Mathematical Inequalities and Applications3 (2000), 443–457.MATHMathSciNetGoogle Scholar
  51. [51]
    M. Weber,Some theorems related to almost sure convergence of orthogonal series, Indagationes Mathematicae (N.S.)11 (2000), 293–311.MATHCrossRefGoogle Scholar
  52. [52]
    M. Weber,Uniform bounds under increment conditions, Transactions of the American Mathematical Society, to appear.Google Scholar
  53. [53]
    M. Weber,Some examples of application of the metric entopy method, Acta Mathematica Hungarica, to appear.Google Scholar
  54. [54]
    A. Zygmund,Trigonometric Series, corrected 2nd ed., Cambridge University Press, 1968.Google Scholar

Copyright information

© The Hebrew University Magnes Press 2005

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations