Israel Journal of Mathematics

, Volume 72, Issue 3, pp 353–371 | Cite as

Geometrical properties of subclasses of complexL 1-preduals

  • Ulf Uttersrud


We introduce the concept of a center of a set of complex functions. The concept is used to extend to complex spaces the max + min characterization of realG-spaces given by Lindenstrauss and Wulbert, to give geometrical and algebraic characterizations of complexC o-spaces and to characterizeM-ideals.


Banach Space Geometrical Property Complex Space Closed Subspace Quotient Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A-E]
    E. Alfsen and E. Effros,Structure in real Banach spaces, Ann. of Math.96 (1972), 98–173.CrossRefMathSciNetGoogle Scholar
  2. [E]
    E. Effros,On a class of real Banach spaces, Isr. J. Math.9 (1971), 430–458.MATHCrossRefMathSciNetGoogle Scholar
  3. [F]
    H. Fakhoury,Preduaux de L-espace, Notion de Centre, J. Funct. Anal.9 (1972), 189–207.MATHCrossRefMathSciNetGoogle Scholar
  4. [F-R1]
    Y. Friedman and B. Russo,Contractive projections on C 0(K), Trans. Am. Math. Soc.273 (1982), 57–73.MATHCrossRefMathSciNetGoogle Scholar
  5. [F-R2]
    Y. Friedman and B. Russo,Function representation of commutative operator triple systems, J. London Math. Soc.27 (1983), 513–524.MATHCrossRefMathSciNetGoogle Scholar
  6. [L1]
    Å. Lima,Intersection properties of balls and subspaces in Banach spaces, Trans. Am. Math. Soc.227 (1977), 1–62.MATHCrossRefMathSciNetGoogle Scholar
  7. [L2]
    Å. Lima,Uniqueness of Hahn-Banach extensions and liftings of linear dependences, Math. Scand.53 (1983), 97–113.MATHMathSciNetGoogle Scholar
  8. [L-R]
    Å. Lima and A. Roy,Characterizations of complex L 1-preduals, Quart. J. Math. Oxford (2)35 (1984), 439–453.MATHCrossRefMathSciNetGoogle Scholar
  9. [L-U]
    Å. Lima and U. Uttersrud,Centers of symmetry in finite intersections of balls in Banach spaces, Isr. J. Math.44 (1983), 189–200.MATHCrossRefMathSciNetGoogle Scholar
  10. [L-W]
    J. Linaenstrauss and D. Wulbert,On the classification of the Banach spaces whose duals are L 1-spaces, J. Funct. Anal.4 (1969), 332–349.CrossRefGoogle Scholar
  11. [LAU]
    Ka-Sing Lau,The dual ball of a Lindenstrauss space, Math. Scand.33 (1973), 323–337.MathSciNetGoogle Scholar
  12. [LIN]
    J. Lindenstrauss,Extension of compact operators, Mem. Am. Math. Soc.48 (1964).Google Scholar
  13. [LOU]
    Å. Lima, G. Olsen and U. Uttersrud,Intersections of M-ideals and G-spaces, Pac. J. Math.104 (1983), 175–177.MATHMathSciNetGoogle Scholar
  14. [O]
    G. Olsen,On the classification of complex Lindenstrauss spaces, Math. Scand.35 (1974), 237–258.MathSciNetGoogle Scholar
  15. [RAO]
    T. Rao,Characterizations of some classes of L 1-preduals by the Alfsen-Effros structure topology, Isr. J. Math.42 (1982), 20–32.MATHCrossRefGoogle Scholar
  16. [ROY]
    N. Roy,An M-ideal characterization of G-spaces, Pac. J. Math.92 (1981), 151–160.MATHGoogle Scholar
  17. [T]
    P. Taylor,A characterization of G-spaces, Isr. J. Math.10 (1971), 131–134.MATHGoogle Scholar
  18. [U]
    U. Uttersrud,On M-ideals and the Alfsen-Effros structure topology, Math. Scand.43 (1978), 369–381.MathSciNetGoogle Scholar

Copyright information

© Hebrew University 1990

Authors and Affiliations

  • Ulf Uttersrud
    • 1
  1. 1.Oslo College of EngineeringOsloNorway

Personalised recommendations