Skip to main content
Log in

The quantum euler class and the quantum cohomology of the Grassmannians

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The Poincaré duality of classical cohomology and the extension of this duality to quantum cohomology endows these rings with the structure of a Frobenius algebra. Any such algebra possesses a canonical “characteristic element;” in the classical case this is the Euler class, and in the quantum case this is a deformation of the classical Euler class which we call the “quantum Euler class.” We prove that the characteristic element of a Frobenius algebraA is a unit if and only ifA is semisimple, and then apply this result to the cases of the quantum cohomology of the finite complex Grassmannians, and to the quantum cohomology of hypersurfaces. In addition we show that, in the case of the Grassmannians, the [quantum] Euler class equals, as [quantum] cohomology element and up to sign, the determinant of the Hessian of the [quantum] Landau-Ginzbug potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Abrams,Two-dimensional topological quantum field theories and Frobenius algebras, Journal of Knot Theory and its Ramifications5 (1996), 569–587.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Abrams,Frobenius Algebra Structures in Topological Quantum Field Theory and Quantum Cohomology, Doctoral dissertation, The Johns Hopkins University, May, 1997.

  3. F. W. Anderson and K. R. Fuller,Rings and Categories of Modules, second edition, Springer-Verlag, New York, 1992.

    MATH  Google Scholar 

  4. A. Beauville,Quantum cohomology of complete intersections, Preprint alg-geom/9501008, 1995.

  5. A. Bertram,Towards a Schubert calculus for maps from a Riemann surface to a Grassmannian, International Journal of Mathematics5 (1994), 811–825.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Bott and L. W. Tu,Differential Forms in Algebraic Topology, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  7. B. Crauder and R. Miranda,Quantum cohomology of rational surfaces, inThe Moduli Space of Curves (Texel Island, 1994), Progress in Mathematics 129, Birkhäuser, Boston, 1995, pp. 33–80.

    Google Scholar 

  8. C. Curtis and I. Reiner,Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, New York, 1962.

    MATH  Google Scholar 

  9. B. Dubrovin,Geometry of 2d topological field theories, inIntegrable Systems and Quantum Groups, Lecture Notes in Mathematics1620, Springer-Verlag, Berlin, 1996, pp. 120–348.

    Chapter  Google Scholar 

  10. E. Getzler, Intersection theory on\(\bar {\mathcal{M}}_{1,4} \) and elliptic Gromov-Witten invariants, Journal of the American Mathematical Society10 (1997), 973–998.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Kontsevich and Yu. Manin,Gromov-Witten classes, quantum cohomology, and enumerative geometry, Communications in Mathematical Physics164 (1994), 525–562.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Kunz,Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, Boston, 1985.

    MATH  Google Scholar 

  13. D. McDuff and D. Salamon,J-holomorphic Curves and Quantum Cohomology, American Mathematical Society, Providence, 1994.

    MATH  Google Scholar 

  14. J. W. Milnor,Morse Theory, Princeton University Press, Princeton, 1963.

    MATH  Google Scholar 

  15. J. W. Milnor and J. D. Stasheff,Characteristic Classes, Princeton University Press, Princeton, 1974.

    MATH  Google Scholar 

  16. Y. Ruan and G. Tian,A mathematical theory of quantum cohomology, Journal of Differential Geometry42 (1995), 259–367.

    MATH  MathSciNet  Google Scholar 

  17. S. Sawin,Direct sum decomposition and indecomposable tqft’s, Journal of Mathematical Physics36 (1995), 6673–6680.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Scheja and U. Storch,Uber Spurfunktionen bei vollstandigen Durchschnitten, Journal für die Reine und Angewandte Mathematik278/279 (1975), 174–189.

    MathSciNet  Google Scholar 

  19. B. Siebert and G. Tian,On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Preprint alg-geom/9403010, 1994.

  20. G. Tian and G. Xu,On the semisimplicity of the quantum cohomology algebras of complete intersections, Preprint alg-geom/9611035, 1996.

  21. W. V. Vasoconcelos,Arithmetic of Blowup Algebras, Cambridge University Press, New York, 1994.

    Google Scholar 

  22. E. Witten,Supersymmetry and Morse theory, Journal of Differential Geometry17 (1982), 661–692.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lowell Abrams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrams, L. The quantum euler class and the quantum cohomology of the Grassmannians. Isr. J. Math. 117, 335–352 (2000). https://doi.org/10.1007/BF02773576

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773576

Keywords

Navigation