Skip to main content
Log in

The canonical spectral sequences for poisson manifolds

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

For a compact symplectic manifoldM of dimension 2n, Brylinski proved that the canonical homology groupH can k (M) is isomorphic to the de Rham cohomology groupH 2n-k(M), and the first spectral sequence {E r(M)} degenerates atE 1(M). In this paper, we show that these isomorphisms do not exist for an arbitrary Poisson manifold. More precisely, we exhibit an example of a five-dimensional compact Poisson manifoldM 5 for whichH can1 (M 5) is not isomorphic toH 4(M 5), andE 1(M 5) is not isomorphic toE 2(M 5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Blair,Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics509, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  2. R. Bott and L. W. Tu,Differential Forms in Algebraic Topology, GTM 82, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  3. J. L. Brylinski,A differential complex for Poisson manifolds, Journal of Differential Geometry28 (1988), 93–114.

    MATH  MathSciNet  Google Scholar 

  4. F. Cantrijn, M. de León and E. A. Lacomba,Gradient vector fields on cosymplectic manifolds, Journal of Physics A: Mathematical and General25 (1992), 175–188.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Chinea, M. de León and J. C. Marrero,Topology of cosymplectic manifolds, Journal de Mathématiques Pures et Appliquées72 (1993), 567–591.

    MATH  Google Scholar 

  6. L. A. Cordero, M. Fernández and A. Gray,Symplectic manifolds without Kähler structure, Topology25 (1986), 375–380.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Corwin and F. P. Greenleaf,Representations of Nilpotent Lie Groups and their Applications, Part 1, CSAM 18, Cambridge University Press, 1990.

  8. M. Fernández, R. Ibáñez and M. de León,On a Brylinski Conjecture for Compact Symplectic Manifolds, Proceedings of the “Meeting on Quaternionic Structures in Mathematics and Physics”, SISSA, Triesty (Italy), 1994, pp. 135–143.

  9. J. Huebschmann,Poisson cohomology and quantization, Journal für die reine und angewandte Mathematik408 (1990), 57–113.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Huebschmann,On the quantization of Poisson algebras, inSymplectic Geometry and Mathematical Physics, actes du colloque en l’honneur de Jean-Marie Souriau (P. Donato, C. Duval, J. Elhadad and G. M. Tuynman, ed.), Progress in Mathematics 99, Birkhäuser, Boston, 1991, pp. 204–233.

    Google Scholar 

  11. J.L. Koszul,Crochet de Schouten-Nijenhuis et cohomologie, inElie Cartan et les Math. d’Aujour d’Hui, Astérisque hors-série (1985), 251–271.

  12. P. Libermann,Sur le problème d’équivalence de certaines structures infinitésimales régulières, Thèse de doctorat d’État, Strasbourg, 1953.

  13. P. Libermann,Sur les automorphismes infinitesimaux des structures symplectiques et des structures de contact, inCollection Géométrie Différentielle Globale (Bruxelles, 1958), Louvain, 1959, pp. 37–59.

  14. P. Libermann and Ch. M. Marle,Symplectic Geometry and Analytical Mechanics, Kluwer, Dordrecht, 1987.

    MATH  Google Scholar 

  15. A. Lichnerowicz,Les variétés de Poisson et les algébres de Lie associées, Journal of Differential Geometry12 (1977), 253–300.

    MATH  MathSciNet  Google Scholar 

  16. I. A. Mal’cev,A class of homogeneous spaces, American Mathematical Society Translations, Series 239 (1951), 276–307.

    Google Scholar 

  17. O. Mathieu,Harmonic cohomology classes of symplectic manifolds, Commentarii Mathematici Helvetici70 (1995), 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. McCleary,User’s Guide to Spectral Sequences, MLS 12, Publish or Perish Inc., Delaware, 1985.

    MATH  Google Scholar 

  19. K. Nomizu,On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Annals of Mathematics59 (1954), 531–538.

    Article  MathSciNet  Google Scholar 

  20. I. Vaisman,Cohomology and Differential Forms, Marcel Dekker, New York, 1973.

    MATH  Google Scholar 

  21. I. Vaisman,Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics 118, Birkhäuser, Boston, 1994.

    MATH  Google Scholar 

  22. A. Weinstein,The local structure of Poisson manifolds, Journal of Differential Geometry18 (1983), 523–557;Errata et addenda, Journal of Differential Geometry22 (1985), 255.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Fernández.

Additional information

This work has been partially supported through grants DGICYT (Spain), Projects PB91-0142 and PB89-0571, PB94-0633-C02-02; and through grants UPV, Project 127.310-EA 191/94, 127.310-EC248/96.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, M., Ibáñez, R. & de León, M. The canonical spectral sequences for poisson manifolds. Isr. J. Math. 106, 133–155 (1998). https://doi.org/10.1007/BF02773464

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773464

Keywords

Navigation