Russian Microelectronics

, Volume 29, Issue 2, pp 77–90 | Cite as

A model and properties of a thermodynamically reversible logic gate

  • K. A. Valiev
  • V. I. Starosel’skii


Requirements for a completely reversible (in thermodynamic terms) binary logic gate in which the computing energy returns to the system and is used in subsequent computations are put forward. A set of elements of the reversible gate is considered, and conditions necessary for its operation are formulated. A mechanical and an electronic design of the completely reversible gate, as well as the configurations of reversible logic units of arbitrary complexity, are suggested. Difficulties in implementing a reversible power supply are discussed. Results of computer-aided simulation of CMIS reversible logic devices are presented.


Supply Voltage Information Entropy RUSSIAN Microelectronics Input Information Reversible Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shannon, C.E., A Mathematical Theory of Communication,Bell Syst. Tech. J., 1948, vol. 27, pp. 379–423; 623–656.MathSciNetMATHGoogle Scholar
  2. 2.
    Bennett, C.H., The Thermodynamics of Computation: A Review,Int. J. Theor. Phys., 1982, vol. 21, no. 12, pp. 905–945.CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Logical Reversibility of Computation,IBM J. Res. & Dev., 1973, vol. 17, no. 11, pp. 525–532.MATHGoogle Scholar
  4. 4.
    Bennett, C.H., Time/Space Trade-offs for Reversible Computation,SIAM J. Comput., 1989, vol. 18, no. 4, pp. 766–776.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bennett, C.H., Notes on the History of Reversible Computation,IBM J. Res. & Dev., 1988, vol. 32, no. 1, pp. 16–23.CrossRefGoogle Scholar
  6. 6.
    Feinman, R.P.,Tiny Computers Obeying Quantum Mechanical Laws. New Directions in Physics: The Los Alamos 40th Anniversary, Metropolis, N., Kerr, D.M., and Rota, G., Eds., Boston: Academic, 1987, pp. 7–25.Google Scholar
  7. 7.
    Landauer, R., Information Is Physical,Physics Today, 1991, vol. 44, pp. 23–29.Google Scholar
  8. 8.
    Landauer, R., Dissipation and Noise Immunity in Computation and Communication,Nature (London), 1988, vol. 335, pp. 779–784.CrossRefGoogle Scholar
  9. 9.
    Keyes, R. and Landauer, R., Minimal Energy Dissipation in Logic,IBM J. Res. & Dev., 1970, vol. 14, no. 2, pp. 152–157.Google Scholar
  10. 10.
    Schneider, T.D., Sequence Logos, Machine/Channel Capacity, Maxwell’s Demon, and Molecular Computers: A Review of the Theory of Molecular Machines,Nanotechnology, 1994, no. 5, pp. 1–18.Google Scholar
  11. 11.
    Zurek, W.H., Algorithmic Randomness, Physical Entropy, Measurement, and Demon of Choice,Theor. Division T-6, MS B288 Los Alamos Nat. Lab., March 12, 1998.Google Scholar
  12. 12.
    Fredkin, E. and Toffoli, T., Design Principles for Achieving High-Performance Submicron Digital Technologies: Proposal to DARPA,MIT Lab. for Comput. Sci., 1978.Google Scholar
  13. 13.
    Fredkin, E. and Toffoli, T., Conservative Logic,Int. J. Theor. Phys., 1982, vol. 21, no. 3/4, pp. 219–253.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mercle, R.C. and Drexler, K.E., Helical Logic,Nanotechnology, 1996, vol. 7, pp. 325–339.CrossRefGoogle Scholar
  15. 15.
    Drexler, K.E., Molecular Engineering: An Approach to the Development of General Capabilities for Molecular Manipulation,Proc. Nat. Acad. Sci. USA, 1981, vol. 78, pp. 5275–5278.CrossRefGoogle Scholar
  16. 16.
    Himman, R.T. and Schlecht, M.F., Recovered Energy Logic: A Single Clock AC Logic,IWLPD’94 Workshop Proc, 1994, pp. 153–158.Google Scholar
  17. 17.
    Seitz, C.L.,et al., Hot-Clock nMOS,Proc. 1985 Chapel Hill Conf. on VLSI, Rockville, MD: Computer Science Press, 1985, pp. 1–17.Google Scholar
  18. 18.
    Athas, W.C., Koller, J.G., and Svensson, L.J.,An Energy-Efficient CMOS Line Driver Using Adiabatic Switching, VLSI Memo ACMOS-TR-2, USC Information Sci. Institute, 1993.Google Scholar
  19. 19.
    Dickinson, G. and Denker, J.S., Adiabatic Dynamic Logic,IEEE J. Solid State Circuits, 1995, vol. 30, no. 3, pp. 311–315.CrossRefGoogle Scholar
  20. 20.
    Maxwell, J.C.,Theory of Heat, London: Longmans, 1904.Google Scholar
  21. 21.
    Skordos, P. and Zurek, W.H., Maxwell’s Demon, Rectifiers, and Second Law,Am. J. Phys., 1992, vol. 60, p. 876.CrossRefGoogle Scholar
  22. 22.
    Starosel’skii, V.I., Reversible Logic,Mikroelektronika, 1999, vol. 28, no. 3, pp. 213–222.Google Scholar
  23. 23.
    Gershenfeld, N., Signal Entropy and the Thermodynamics of Computation,IBM Syst. J., 1998, vol. 35, no. 3/4, pp. 557–586.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • K. A. Valiev
    • 1
  • V. I. Starosel’skii
    • 2
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Electronic Engineering (Technological University)ZelenogradRussia

Personalised recommendations