Israel Journal of Mathematics

, Volume 129, Issue 1, pp 61–76 | Cite as

On the mixing property for hyperbolic systems



We describe an elementary argument from abstract ergodic theory that can be used to prove mixing of hyperbolic flows. We use this argument to prove the mixing property of product measures for geodesic flows on (not necessarily compact) negatively curved manifolds. We also show the mixing property for the measure of maximal entropy of a compact rank-one manifold.


Invariant Measure Hyperbolic System Geodesic Flow Curve Manifold Length Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AA] V. Arnold and A. Avez,Ergodic Problems of Classical Mechanics, Addison-Wesley, Amsterdam, 1988.Google Scholar
  2. [An] D. Anosov,Geodesic flows on Riemannian manifolds with negative curvature, Proceeings of the Steklov Institute of Mathematics90 (1967).Google Scholar
  3. [Ba1] W. Ballmann,Axial isometries of manifolds of non-positive curvature, Mathematische Annalen259 (1982), 131–144.MATHCrossRefMathSciNetGoogle Scholar
  4. [Ba2] W. Ballmann,Lectures on spaces of nonpositive curvature, DMV Seminar, Band25, Birkhäuser, Basel, 1995.MATHGoogle Scholar
  5. [BK] K. Burns and R. Katok,Manifolds with non positive curvature, Ergodic Theory and Dynamical Systems5 (1985), 307–317.MATHMathSciNetGoogle Scholar
  6. [BS] K. Burns and R. Spatzier,Manifolds of non-positive curvature and their buildings, Publications Mathématiques de l’Institut des Hautes Études Scientifiques65 (1987), 35–59.MATHCrossRefMathSciNetGoogle Scholar
  7. [D] F. Dal’bo,Topologie du feuilletage fortement stable, Annales de l’Institut Fourier (Grenoble)50 (2000), 981–993.MATHMathSciNetGoogle Scholar
  8. [DOP] F. Dal’bo, J.-P. Otal and M. Peigné,Séries de Poincaré des groupes géométriquement finis, Israel Journal of Mathematics118 (2000), 109–124.MATHMathSciNetGoogle Scholar
  9. [E] P. Eberlein,Geometry of Non-positively Curved Manifolds, The University of Chicago Press, 1996.Google Scholar
  10. [EMcM] A. Eskin and C. McMullen,Mixing, counting and equidistribution in Lie groups, Duke Mathematical Journal71 (1993), 181–209.MATHCrossRefMathSciNetGoogle Scholar
  11. [Ha1] U. Hamenstädt,A new description of the Bowen-Margulis measure, Ergodic Theory and Dynamical Systems9 (1989), 455–464.MATHMathSciNetCrossRefGoogle Scholar
  12. [HMP] B. Host, J.-F. Mela and F. Parreau,Analyse harmonique des mesures, Asterisque135–136 (1986).Google Scholar
  13. [HP] S. Hersonsky and F. Paulin,On the rigidity of discrete isometry groups of negatively curved spaces, Commentarii Mathematici Helvetici72 (1997), 349–388.MATHCrossRefMathSciNetGoogle Scholar
  14. [Ka1] V. Kaimanovich,Invariant measures and measures at infinity, Annales de l’Institut Henri Poincaré. Physique Théorique53 (1990), 361–393.MATHMathSciNetGoogle Scholar
  15. [Ka2] V. Kaimanovich,Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, Journal für die reine und angewandte Mathematik455 (1994), 57–103.MATHMathSciNetCrossRefGoogle Scholar
  16. [Kn] G. Knieper,The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Annals of Mathematics148 (1998), 291–314.MATHCrossRefMathSciNetGoogle Scholar
  17. [L] F. Ledrappier,A renewal theorem for the distance in negative curvature, Proceedings of Symposia in Pure Mathematics57 (1995), 351–360.MathSciNetGoogle Scholar
  18. [M] G. A. Margulis,Applications of ergodic theory for the investigation of manifolds of negative curvature, Functional Analysis and its Applications3 (1969), 335–336.MATHCrossRefMathSciNetGoogle Scholar
  19. [N] F. Newberger,Ergodic theory of the Bowen-Margulis measure on exotic hyperbolic spaces, Preprint, University of Maryland, 1998.Google Scholar
  20. [O] J.-P. Otal,Sur la géométrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Revista Matemática Iberoamericana8 (1992), 441–456.MATHMathSciNetGoogle Scholar
  21. [RN] F. Riesz and B. Sz. Nagy,Leçons d’analyse fonctionelle, 5ème édition, Gauthier-Villars, Paris, 1968.Google Scholar
  22. [Ro] T. Roblin,Sur la théorie ergodique des groupes discrets, Thèse de l’Université d’Orsay, 1999.Google Scholar
  23. [Ru] D. J. Rudolph,Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite hyperbolic manifold, Ergodic Theory and Dynamical Systems2 (1982), 491–512.MATHMathSciNetGoogle Scholar
  24. [Sa] P. Sarnak,Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Communications on Pure and Applied Mathematics34 (1981), 719–739.MATHCrossRefMathSciNetGoogle Scholar
  25. [Su] D. Sullivan,Entropy, Hausdorff measures old and new and limit sets of geometrically finite Kleinian groups, Acta Mathematica153 (1984), 259–277.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 2002

Authors and Affiliations

  1. 1.MAPMOUniversité d’OrléansOrléans Cedex 2France

Personalised recommendations