Skip to main content
Log in

Die lage der ersten anregungsstufe in kernen mit gerader protonen und gerader neutronenzahl

  • Published:
Il Nuovo Cimento (1943-1954)

Summary

The introduction refers to previous short communications [3] on the first excited state of even-even nuclei (Chap. 1). A survey shows that the lowest excitation energy of even-even nuclei is a smooth function of the neutron and proton number. In sequences of neighbouring nuclei the excitation energy increases if the number of protons or of neutrons approaches the next magic number (Chap.2). Several nuclei which seemed to disobey this rule were reinvestigated experimentally, and in every case the new data obtained confirm the rule (Chap.3). The 145 keV radiation which accompanies the transmutation of Cl34 into S34 [29] is an isomeric (M 3) transition between the known33-min state and the ground state of Cl34, the half life of which is 1.45 s. An 0+ → 0+ transition with an ft-value of 2 700 s leads directly to the ground state of S34 (§ 3.2). Two different isotopes of antimony, Sb12 and Sb116, have indistinguishable half lives of (16 ±2) min. The 1.3 MeV level which previously was attributed to Sn120 [42] belongs to Sn116. The 60-min activity, with a γ-ray of 0.70 MeV [41], probably has to be reassigned to mass number115 (instead of 116) (§ 3.10). In Hg196 a reported γ-ray of 175 keV [46] could not be confirmed, and a new line corresponding to a first level at 426 keV was found, which agrees with our rules (§ 3.13). Further experiments deal with Mo96, Zr92 and Mo92. The dependence of the lowest excitation energy on the number of protons and neutrons is interpreted in terms of the shell modell (Chap.4). It is shown that a strong configurational interaction must be assumed (Chap.5), and that in general the first excited state is due to a simultaneous excitation of the neutron and the proton structure (Chap.6).

Riassunto

L’introduzione si richiama a precedenti brevi comunicazioni sul primo stato eccitato dei nuclei pari (Cap. 1). Un breve esame mostra che la più bassa energia di eccitazione dei nuclei pari-pari è una funzione continua del numero dei neutroni e dei protoni. In serie di nuclei vicini l’energia di eccitazione cresce se il numero dei protoni o dei neutroni si avvicina al prossimo numero magico (Cap.2). Sono stati riesaminati sperimentalmente alcuni nuclei ehe sembravano disobbedire a questa regola ed in ogni caso i nuovi risultati ottenuti confermano la regola (Cap. 3). La radiazione di 145 keV che accompagna la trasformazione di Cl34 in S34 [29] è dovuta a una transizione isomerica (M 3) tra lo stato 33-min noto e lo stato fondamentale di Cl34, il cui semiperiodo è 1,45 s. Una transizione 0+→ 0+ con valoreft di 2 700 s porta direttamente allo stato fondamentale dell’S34 (3.2). Due differenti isotopi del’ antimonio, Sb120 e Sb116 hanno semiperiodi indistinguibili di (16 ±2) min. Il livello a 1.3 MeV che precedentemente si attribuisce all’Sb120 [42] appartiene allo Sn116. L’attività di 60 min con emissione γ di 0,70 MeV [41] deve probabilmente essere riassegnata al numéo di massa 115 (invece del 116) (3.10). Nel Hg196 non si è potuto confermare la radiazione γ di 175 keV riportata [46] e si è trovato una nuova riga corrispondente a un primo livello a 426 keV, che si accorda con le nostre regole (3.13). Ulteriori esperimenti sono stati eseguiti con Mo96, Zr92, e Mo92. La dipendenza della piè bassa energia d’eccitazione dal numero dei neutroni e dei protoni è interpretata in termini del modello a strati (Cap.4). Si dimostra che si deve ammettere una forte interazione fra le conflgurazioni (Cap.5) e ehe in generale il primo stato eccitato è dovuto a una eccitazione simultanea della struttura neutronica e protonica (Cap.6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. M. Goeppert-Mayer:Phys. Rev.,75, 1969 (1949).

    Article  ADS  Google Scholar 

  2. R. D. Hill:Phys. Rev.,79, 1021 (1950).

    Article  ADS  Google Scholar 

  3. P. Stähelin undP. Preiswerk:Helv. Phys. Acta,24, 623 (1951).P. Preiswerk undP. Stähelin:Physica,18, 1118 (1952).

    Google Scholar 

  4. G. Schaeff-Goldhaber:Phys. Rev.,87, 218 (1952);Physica,18, 1105 (1952);Phys. Rev. 90, 587 (1953).

    Google Scholar 

  5. M. Goldhaber, E. DER Mateosian, G. Scshaef-Goldhaber undA. W. Sunyar Phys. Rev.,83, 661 (1951).

    Article  ADS  Google Scholar 

  6. M. Goldhaber undA. W. Sunyar:Phys. Rev.,83, 906 (1051).

    Article  Google Scholar 

  7. G. Scharff-Goldhaber:Physica,18, 1105 (1952).

    Article  ADS  Google Scholar 

  8. J. M. Hollander, J. Perlmann, G. T. Seaborg:UCRL, Report1928 (University of California, Radiation Laboratory, (1952).

    Google Scholar 

  9. F. Ajzenberg undT. Lauritsen:Rev. Mod. Phys.,24, 321 (1952).

    Article  ADS  Google Scholar 

  10. D. E. Alburger undE. M. Hafner:Rev. Mod. Phys.,22, 373 (1950).

    Article  ADS  Google Scholar 

  11. Nuclear Data, National Bureau of Standards Ciruclar 499 plus drei Supplemente (1950-51).

  12. J. C. Bowe, M. Goldhaber, R. D. Hill, W. E. Meyerhof undO. Sala:Phys, Rev.,73, 1219 (1948).

    Google Scholar 

  13. C. M. Huddleston undA. C. G. Mitchell:Phys. Rev.,88, 1350 (1952).

    Article  ADS  Google Scholar 

  14. P. Preiswerk undP. Stähelin:Helv. Phys. Acta,24, 300 (1951).

    Google Scholar 

  15. H. Medicus, P. Preiswerk undP. Scherrer:Helv. Phys. Acta,23, 299 (1950).

    Google Scholar 

  16. D. N. Kundu undM. L. Pool:Phys. Rev.,74, 1775 (1948).

    Article  ADS  Google Scholar 

  17. D. Maeder undP. Preiswerk:Helv. Phys. Acta 24, 625 (1951).

    Google Scholar 

  18. M. Goodrich undE. C. Campbell:Phys. Rev.,85, 742 (1952).

    Google Scholar 

  19. R. H. Nussbaum: demnächst inPhysica.

  20. W. A. Thornton, E. der Mateosian, H. T. Motz undM. Goldhaber:Phys. Rev.,86, 604 (1952).

    Google Scholar 

  21. R. W. Pringle, S. Standil, H. W. Taylor undG. Frayer:Phys. Rev.,84, 1066 (1952).

    Article  ADS  Google Scholar 

  22. C. T. Hibdon undC. O. Muelhause:Phys. Rev.,88, 943 (1952).

    Article  ADS  Google Scholar 

  23. R. Katz undM. R. Lee:Phys. Rev.,85, 1038 (1952).

    Article  ADS  Google Scholar 

  24. T. C. Chu:Phys. Rev.,79, 582 (1950).

    Article  ADS  Google Scholar 

  25. J. M. Cork, J. M. LeBlanc, A. E. Stoddard, W. J. ChildS, C. E. Branyan undD. W. Martin:Phys. 82, 258 (1951).

    Google Scholar 

  26. P. Stähelin:Phys. Rev.,87, 374 (1952).

    Article  ADS  Google Scholar 

  27. S. Rosenblum. M. Valdares undM. Guillot:Compt. Rend. Paris,234, 1767 (1952).

    Google Scholar 

  28. D. C. Dunlavey undT. Seaborg:Phys. Rev.,87, 165 (1952).

    Article  ADS  Google Scholar 

  29. L. Ruby undJ. R. Richardson:Phys. Rev.,83, 698 (1951).

    Article  ADS  Google Scholar 

  30. D. Maeder undV. Wintersteiger:Phys. Rev.,87, 537 (1952) undPhysica. 18, 1147 (1952).

    Article  ADS  Google Scholar 

  31. M. E. Rose G. H. Goertzel B. J. Spinrad, J. Harr undP. Strong:Phys. Rev.,83, 79 (1951).

    Article  ADS  MATH  Google Scholar 

  32. B. H. Flowers:Proc. Roy. Soc, A212, 248 (1952); A215, 398 (1952);Phys. Rev.,86, 254 (1952);Physica,18, 1101 (1952).

    Article  ADS  Google Scholar 

  33. F. J. Boley undD. J. Zaffarano:Phys. Rev.,84, 1059 (1951).

    Article  ADS  Google Scholar 

  34. J. B. Hoag:Phys. Rev.,57, 937 (1940).

    Article  ADS  Google Scholar 

  35. A. D. Schellberg, M. B. Sampson undA. C. G. Mitchell:Rev. Scient. Instr. 19, 458 (1948).

    Article  ADS  Google Scholar 

  36. G. E. Valley undR. L. MacCreary:Phys. Rev.,56, 863 (1939).

    Article  ADS  Google Scholar 

  37. P. Marmier undP. Preiswerk: unveröffentlicht.

  38. H. T. Esterday undH. A. Medicus:Phys. Rev.,89, 752 (1953).

    Article  ADS  Google Scholar 

  39. M. L. Pool undJ. E. Edwards:Phys. Rev.,67, 60 (1945).

    Google Scholar 

  40. D. N. Kundu undM. L. Pool:Phys. Rev.,71, 140 (1947).

    Google Scholar 

  41. G. M. Temmer:Phys. Rev.,76, 424 (1949).

    Article  ADS  Google Scholar 

  42. J. P. Blaser, F. Boehm undP. Marmier:Helv. Phys. Ada,23, 623 (1950).

    Google Scholar 

  43. J. P. Blaser, F. Boehm, P. Marmier undP. Scherrer:Helv. Phys. Ada,24, 441 (1951).

    Google Scholar 

  44. H. Slätis, S. J. DuToit undK. Siegbahn:Phys. Rev.,78, 498 (1950).

    Article  ADS  Google Scholar 

  45. D. Kurath:Phys. Rev.,80, 98 (1950).

    Article  ADS  Google Scholar 

  46. R. M. Steffen, O. Huber undF. Humbel:Helv. Phys. Acta,22, 167 (1949).

    Google Scholar 

  47. O. Huber, F. Humbel, H. Schneider undA. DeShalit:Helv. Phys. Acta,25, 3 (1952).

    Google Scholar 

  48. F. Asaro undJ. Perlmann:Phys. Rev.,87, 393 (1952).

    Article  ADS  Google Scholar 

  49. A. H. Wapstra:Dissertation, Univ. Amsterdam (1953).

  50. A. Bohr undB. R. Mottelson:Phys. Rev.,89, 316 (1953) undPhys. Rev.,90r 717 (1953).

    Article  ADS  Google Scholar 

  51. P. Macklin, L. Lidofsky undC. S. Wu:Phys. Rev.,78, 391 (1952).

    Article  ADS  Google Scholar 

  52. M. Goldhaber undR. D. Hill:Rev. Mod. Phys.,24, 179 (1952).

    Article  ADS  Google Scholar 

  53. K. Geiger:Zeits. f. Naturforschung,5a, 401 (1950).

    ADS  Google Scholar 

  54. H. J. Maehly undP. Stähelin:Helv. Phys. Acta,25, 624 (1952).

    Google Scholar 

  55. B. H. Flowers:Proc. Roy. Soc., A210, 497 (1952).

    Article  ADS  Google Scholar 

  56. J. A. Harwey:Phys. Rev.,81, 353 (1951).

    Article  ADS  Google Scholar 

  57. O. Haxel, J. H. Jensen undH. E. Suess:Erg. exakt. Natwiss.,26, 265 (1952).

    Google Scholar 

  58. L. W. Nordheim:Phys. Rev.,75, 1894 (1949).

    Article  ADS  Google Scholar 

  59. J. Talmi:Helv. Phys. Acta,25, 185 (1952).

    MATH  Google Scholar 

  60. A. W. Sunyar, J. W. Mihelich, G. Scharff-Goldhaber undM. Goldhaber t Phys. Rev.,86, 1023 (1952).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stàhelin, P., Preiswerk, P. Die lage der ersten anregungsstufe in kernen mit gerader protonen und gerader neutronenzahl. Nuovo Cim 10, 1219–1260 (1953). https://doi.org/10.1007/BF02773115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773115

Navigation