Advertisement

Plant Molecular Biology Reporter

, Volume 22, Issue 4, pp 419–425 | Cite as

Isolation of bacterial artificial chromosome DNA by means of improved alkaline lysis and double potassium acetate precipitation

  • David P. Villalobos
  • Rocío Bautista
  • Francisco M. Cánovas
  • M. Gonzalo Claros
Protocols

Abstract

This work describes an easy alkaline lysis method for isolatating bacterial artificial chromosome (BAC) DNA in sufficient quantity and quality for further manipulation without the need to use a kit. The method starts with 10 mL of culture and, by alkaline lysis only, renders up to 150 ng of DNA per milliliter of culture. This BAC DNA was successfully digested with restriction enzymes, sequenced, and subjected to PCR.

Key words

BAC DNA isolation DNA precipitation FIGE sodium acetate 

Abbreviations

BAC

bacterial artificial chromosome

Fd-GOGAT

ferredoxin dependent glutamate synthase (EC 1.4.7.1)

FIGE

field inversion gel electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnboim HC and Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7: 1513–1523.PubMedCrossRefGoogle Scholar
  2. Chen F, Pan H-Q, and Ying F (2002) AC DNA isolation from 200 ml cultures by a cleared lysate method followed by double acetate precipitation. University of Oklahoma's Advanced Center for Genome Technology Web site. Updated 14 March 2002. Accessed 16 November 2004 <http://www.genome.ou.edu/BAC_isoln_200ml_culture. html>.Google Scholar
  3. García-Gutiérrez Á, Cantón FR, Gallardo F, Sánchez-Jiménez F, and Cánovas FM (1995) Expression of ferredoxin-dependent glutamate synthase in dark-grown pine seedlings. Plant Mol Biol 27: 115–128.PubMedCrossRefGoogle Scholar
  4. Georgi L, Wang Y, Yvergniaux D, Ormsbee T, Inigo M, Reighard G, and Abbott G (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105: 1151–1158.PubMedCrossRefGoogle Scholar
  5. Kelley JM, Field CE, Craven MB, Bocskai D, Kim U-J, Rounsley SD, and Adams MD (1999) High throughput direct end sequencing of BAC clones. Nucleic Acids Res 27: 1539–1546.PubMedCrossRefGoogle Scholar
  6. Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, and Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42: 1176–1182.PubMedCrossRefGoogle Scholar
  7. Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, and Dean RA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44: 154–162.PubMedGoogle Scholar
  8. Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, and Gessler C (1999) Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance geneVf. Mol Gen Genet 262: 884–891.PubMedCrossRefGoogle Scholar
  9. Sambrook J and Russell DW (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  10. She K (2003) So you want to work with giants: the BAC vector. BioTech J 1: 69–74.Google Scholar
  11. Sinnett D, Richer C, and Baccichet A (1998) Isolation of stable bacterial artificial chromosome DNA using a modified alkaline lysis method. BioTechniques 24: 752–754.PubMedGoogle Scholar
  12. Song J, Dong F, and Jiang J (2000) Construction of a bacterial artificial chromosome (BAC) library for potato molecular cytogenetics research. Genome 43: 199–204.PubMedCrossRefGoogle Scholar
  13. Thomas NR, Koshy S, Simsek M, and Abraham AK (1988) A precaution when preparing very large plasmids by alkaline lysis procedure. Biotechnol Appl Biochem 10: 402–407.PubMedGoogle Scholar
  14. Vanhouten W and MacKenzie S (1999) Construction and characterization of a common bean bacterial artificial chromosome library. Plant Mol Biol 40: 977–983.PubMedCrossRefGoogle Scholar
  15. Vilarinhos AD, Piffanelli P, Lagoda P, Thibivilliers S, Sabau X, Carreel F, and D'Hont A (2003) Construction and characterization of a bacterial artificial chromosome library of banana (Musa acuminata Colla). Theor Appl Genet 106: 1102–1106.PubMedGoogle Scholar
  16. Wang K, Boysen C, Shizuya H, Simon MI, and Hood L (1997) Complete nucleotide sequence of two generations of a bacterial artificial chromosome cloning vector. Bio Techniques 23: 992–994.Google Scholar
  17. Zhang HB (2000) Construction and Manipulation of Large-insert Bacterial Clone Libraries—Manual. Texas A&M University, College Station, Texas.Google Scholar
  18. Zhang HB and Wu CC (2001) BAC as tools for genome sequencing. Plant Physiol Biochem 39: 195–209.CrossRefGoogle Scholar

Copyright information

© International Society for Plant Molecular Biology 2004

Authors and Affiliations

  • David P. Villalobos
    • 1
  • Rocío Bautista
    • 1
  • Francisco M. Cánovas
    • 1
  • M. Gonzalo Claros
    • 1
  1. 1.Departamento de Biología Molecular y Bioquímica, Instituto Andaluz de Biotecnología y Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations