Israel Journal of Mathematics

, Volume 68, Issue 2, pp 185–192 | Cite as

A proof of the theorem of amir and lindenstrauss

  • Charles Stegall


We give a very short proof of the theorem concerning long strings of projections mentioned in the title. The nature of the proof is such that, for example, a result of Gul’ko follows easily.


Banach Space Compact Subset Closed Subspace Weak Topology Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AL]
    D. Amir and J. Lindenstrauss,The structure of weakly compact sets in Banach spaces, Ann. of Math.88 (1968), 35–46.CrossRefMathSciNetGoogle Scholar
  2. [AN]
    S. Argyros and S. Negrepontis,On weakly countably determined spaces of continuous functions. Proc. Am. Math. Soc.87 (1983), 731–736.MATHCrossRefMathSciNetGoogle Scholar
  3. [B]
    N. Bourbaki,Topologie général. Actualités Sci. Ind., Paris, 1942–1949.Google Scholar
  4. [En]
    R. Engelking,General Topology, PWN, Warszawa, 1977.MATHGoogle Scholar
  5. [Gu]
    S. P. Gul’ko,On the structure of spaces of continuous functions and their complete paracompactness, Russian Math. Surveys34 (1979), 36–44.MATHCrossRefMathSciNetGoogle Scholar
  6. [M]
    S. Mercourakis,On weakly countably determined Banach spaces, Trans. Am. Math. Soc., to appear.Google Scholar
  7. [N]
    M. A. Naimark,Normed Rings, Noordhoff, Gromingen, 1964.MATHGoogle Scholar
  8. [Ne]
    S. Negrepontis,Banach spaces and topology, inHandbook of Set Theoretic Topology, North-Holland, Amsterdam, 1984.Google Scholar
  9. [NW]
    I. Namioka and R. F. Wheeler,Gul’ko’s proof of the Amir-Lindenstrauss theorem, Contemp. Math.52 (1986), 113–120.MathSciNetGoogle Scholar
  10. [P]
    R. Pol,On Pointwise and Weak Topology in Function Spaces, University of Warsaw, 1984.Google Scholar
  11. [Pry]
    J. D. Pryce,A device of R. J. Whitley applied to pointwise compactness in spaces of continuous functions, Proc. London Math. Soc.23 (1971), 532–536.MATHCrossRefMathSciNetGoogle Scholar
  12. [S]
    C. Stegall,Generalizations of a theorem of Namioka, Proc. Am. Math. Soc.102 (1988), 559–564.MATHCrossRefMathSciNetGoogle Scholar
  13. [T]
    M. Talagrand,Espaces de Banach faiblement k-analytique, Ann. of Math.110 (1979), 407–438.CrossRefMathSciNetGoogle Scholar
  14. [V]
    L. Vasak,On one generalization of weakly compactly generated Banach spaces, Studia Math.70 (1981), 11–19.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1989

Authors and Affiliations

  • Charles Stegall
    • 1
  1. 1.Institut für MathematikJohannes Kepler UniversitätLinzAustria

Personalised recommendations