Israel Journal of Mathematics

, Volume 68, Issue 2, pp 185–192 | Cite as

A proof of the theorem of amir and lindenstrauss

  • Charles Stegall


We give a very short proof of the theorem concerning long strings of projections mentioned in the title. The nature of the proof is such that, for example, a result of Gul’ko follows easily.


Banach Space Compact Subset Closed Subspace Weak Topology Hausdorff Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AL]
    D. Amir and J. Lindenstrauss,The structure of weakly compact sets in Banach spaces, Ann. of Math.88 (1968), 35–46.CrossRefMathSciNetGoogle Scholar
  2. [AN]
    S. Argyros and S. Negrepontis,On weakly countably determined spaces of continuous functions. Proc. Am. Math. Soc.87 (1983), 731–736.MATHCrossRefMathSciNetGoogle Scholar
  3. [B]
    N. Bourbaki,Topologie général. Actualités Sci. Ind., Paris, 1942–1949.Google Scholar
  4. [En]
    R. Engelking,General Topology, PWN, Warszawa, 1977.MATHGoogle Scholar
  5. [Gu]
    S. P. Gul’ko,On the structure of spaces of continuous functions and their complete paracompactness, Russian Math. Surveys34 (1979), 36–44.MATHCrossRefMathSciNetGoogle Scholar
  6. [M]
    S. Mercourakis,On weakly countably determined Banach spaces, Trans. Am. Math. Soc., to appear.Google Scholar
  7. [N]
    M. A. Naimark,Normed Rings, Noordhoff, Gromingen, 1964.MATHGoogle Scholar
  8. [Ne]
    S. Negrepontis,Banach spaces and topology, inHandbook of Set Theoretic Topology, North-Holland, Amsterdam, 1984.Google Scholar
  9. [NW]
    I. Namioka and R. F. Wheeler,Gul’ko’s proof of the Amir-Lindenstrauss theorem, Contemp. Math.52 (1986), 113–120.MathSciNetGoogle Scholar
  10. [P]
    R. Pol,On Pointwise and Weak Topology in Function Spaces, University of Warsaw, 1984.Google Scholar
  11. [Pry]
    J. D. Pryce,A device of R. J. Whitley applied to pointwise compactness in spaces of continuous functions, Proc. London Math. Soc.23 (1971), 532–536.MATHCrossRefMathSciNetGoogle Scholar
  12. [S]
    C. Stegall,Generalizations of a theorem of Namioka, Proc. Am. Math. Soc.102 (1988), 559–564.MATHCrossRefMathSciNetGoogle Scholar
  13. [T]
    M. Talagrand,Espaces de Banach faiblement k-analytique, Ann. of Math.110 (1979), 407–438.CrossRefMathSciNetGoogle Scholar
  14. [V]
    L. Vasak,On one generalization of weakly compactly generated Banach spaces, Studia Math.70 (1981), 11–19.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1989

Authors and Affiliations

  • Charles Stegall
    • 1
  1. 1.Institut für MathematikJohannes Kepler UniversitätLinzAustria

Personalised recommendations