Israel Journal of Mathematics

, Volume 124, Issue 1, pp 327–331 | Cite as

Univalent harmonic mappings of annuli and a conjecture of J. C. C. Nitsche



Letw=f(z) be a univalent harmonic mapping of the annulus {ρ≤|z|≤1} onto the annulus {σ≤|w|≤1}. It is shown thatσ≤1/(1+(ρ 2/2)(logρ)2).


Harmonic Mapping Unit Disk Conformal Mapping Boundary Component ISRAEL Journal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BH]
    D. Bshouty and W. Hengartner,Univalent harmonic mappings in the plane, Annales Universitatis Mariae Curie-Skłodowska, Sectio AXLVIII 3 (1994), 12–42.MathSciNetGoogle Scholar
  2. [D]
    P. Duren,A survey of harmonic mappings in the plane, Texas Tech University Mathematics Series18 (1992), 411–415.Google Scholar
  3. [L]
    A. Lyzzaik,The module of the image annuli under univalent harmonic mappings and a conjecture of J. C. C. Nitsche, preprint.Google Scholar
  4. [LV]
    O. Lehto and K. I. Virtanen,Quasiconformal Mappings in the Plane, 2nd ed., Springer-Verlag, Berlin, 1973.MATHGoogle Scholar
  5. [N]
    J.C.C. Nitsche,On the modulus of doubly-connected regions under harmonic mappings, The American Mathematical Monthly69 (1962), 781–782.MATHCrossRefMathSciNetGoogle Scholar
  6. [S]
    G. Schober,Planar harmonic mappings, inComputational Methods and Function Theory Proceedings, Valparaiso 1989, Lectures Notes in Mathematics1435, Springer-Verlag, Berlin, 1990, pp. 171–176.CrossRefGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2001

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations