Israel Journal of Mathematics

, Volume 124, Issue 1, pp 327–331 | Cite as

Univalent harmonic mappings of annuli and a conjecture of J. C. C. Nitsche

  • Allen Weitsman


Letw=f(z) be a univalent harmonic mapping of the annulus {ρ≤|z|≤1} onto the annulus {σ≤|w|≤1}. It is shown thatσ≤1/(1+(ρ 2/2)(logρ)2).


Harmonic Mapping Unit Disk Conformal Mapping Boundary Component ISRAEL Journal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BH]
    D. Bshouty and W. Hengartner,Univalent harmonic mappings in the plane, Annales Universitatis Mariae Curie-Skłodowska, Sectio AXLVIII 3 (1994), 12–42.MathSciNetGoogle Scholar
  2. [D]
    P. Duren,A survey of harmonic mappings in the plane, Texas Tech University Mathematics Series18 (1992), 411–415.Google Scholar
  3. [L]
    A. Lyzzaik,The module of the image annuli under univalent harmonic mappings and a conjecture of J. C. C. Nitsche, preprint.Google Scholar
  4. [LV]
    O. Lehto and K. I. Virtanen,Quasiconformal Mappings in the Plane, 2nd ed., Springer-Verlag, Berlin, 1973.MATHGoogle Scholar
  5. [N]
    J.C.C. Nitsche,On the modulus of doubly-connected regions under harmonic mappings, The American Mathematical Monthly69 (1962), 781–782.MATHCrossRefMathSciNetGoogle Scholar
  6. [S]
    G. Schober,Planar harmonic mappings, inComputational Methods and Function Theory Proceedings, Valparaiso 1989, Lectures Notes in Mathematics1435, Springer-Verlag, Berlin, 1990, pp. 171–176.CrossRefGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2001

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations